Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mycobacterium bovis is the causative agent of bovine tuberculosis, a disease that is increasing in incidence in United Kingdom cattle herds. In addition to increasing economic losses, the rise in bovine tuberculosis poses a human health risk. There is an urgent requirement for effective strategies for disease eradication; this will likely involve vaccination in conjunction with current test and slaughter policies. A policy involving vaccination would require an accurate diagnosis of M. bovis-infected animals and the potential to distinguish these animals from vaccinates. Currently used diagnostic tests, the skin test and gamma interferon (IFN-gamma) blood test, have a sensitivity of up to 95%. A further complication is that M. bovis BCG-vaccinated animals are also scored positive by these tests. We tested the hypothesis that the quantification of IFN-gamma-producing lymphocytes by flow cytometric analysis of intracellular IFN-gamma expression would provide a more accurate discrimination of M. bovis-infected animals from BCG vaccinates. Significant numbers of IFN-gamma-expressing CD4+ T cells were detected following culture of heparinized blood from M. bovis-infected animals, but not from BCG vaccinates, with purified protein derived from M. bovis (PPD-B) or live mycobacteria. Only 1 of 17 BCG-vaccinated animals had a significant number of CD4+ T lymphocytes expressing IFN-gamma, compared with 21/22 M. bovis-infected animals. This assay could allow an accurate diagnosis of M. bovis and allow the discrimination of BCG-vaccinated cattle from infected cattle.

Original publication

DOI

10.1128/CVI.00291-06

Type

Journal article

Journal

Clin Vaccine Immunol

Publication Date

12/2006

Volume

13

Pages

1343 - 1348

Keywords

Animals, BCG Vaccine, CD4-Positive T-Lymphocytes, Cattle, Flow Cytometry, Interferon-gamma, Mycobacterium bovis, Tuberculosis, Bovine, Vaccination