Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Over the past three decades, a vast amount of new information has been uncovered describing how the globin genes are regulated. This knowledge has provided significant insights into the general understanding of the regulation of human genes. It is now known that molecular defects within and around the α- and β-globin genes, as well as in the distant regulatory elements, can cause thalassemia. Unbalanced production of globin chains owing to defective synthesis of one, and the continued unopposed synthesis of another, is the central causative factor in the cellular pathology and pathophysiology of thalassemia. A large body of clinical, genetic, and experimental evidence suggests that altering globin chain imbalance by reducing the production of α-globin synthesis ameliorates the disease severity in patients with β-thalassemia. With the development of new genetic-based therapeutic tools that have a potential to decrease the expression of a selected gene in a tissue-specific manner, the possibility of decreasing expression of the α-globin gene to improve the clinical severity of β-thalassemia could become a reality.

Original publication

DOI

10.1111/nyas.12988

Type

Journal article

Journal

Ann N Y Acad Sci

Publication Date

03/2016

Volume

1368

Pages

16 - 24

Keywords

epigenetic drug targeting, gene regulation, genome editing, α-globin, β-thalassemia, Animals, Gene Expression Regulation, Humans, Treatment Outcome, alpha-Globins, beta-Thalassemia