Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PhenCode (Phenotypes for ENCODE; http://www.bx.psu.edu/phencode) is a collaborative, exploratory project to help understand phenotypes of human mutations in the context of sequence and functional data from genome projects. Currently, it connects human phenotype and clinical data in various locus-specific databases (LSDBs) with data on genome sequences, evolutionary history, and function from the ENCODE project and other resources in the UCSC Genome Browser. Initially, we focused on a few selected LSDBs covering genes encoding alpha- and beta-globins (HBA, HBB), phenylalanine hydroxylase (PAH), blood group antigens (various genes), androgen receptor (AR), cystic fibrosis transmembrane conductance regulator (CFTR), and Bruton's tyrosine kinase (BTK), but we plan to include additional loci of clinical importance, ultimately genomewide. We have also imported variant data and associated OMIM links from Swiss-Prot. Users can find interesting mutations in the UCSC Genome Browser (in a new Locus Variants track) and follow links back to the LSDBs for more detailed information. Alternatively, they can start with queries on mutations or phenotypes at an LSDB and then display the results at the Genome Browser to view complementary information such as functional data (e.g., chromatin modifications and protein binding from the ENCODE consortium), evolutionary constraint, regulatory potential, and/or any other tracks they choose. We present several examples illustrating the power of these connections for exploring phenotypes associated with functional elements, and for identifying genomic data that could help to explain clinical phenotypes.

Original publication

DOI

10.1002/humu.20484

Type

Journal article

Journal

Hum Mutat

Publication Date

06/2007

Volume

28

Pages

554 - 562

Keywords

Agammaglobulinaemia Tyrosine Kinase, Blood Group Antigens, Cooperative Behavior, Cystic Fibrosis Transmembrane Conductance Regulator, Databases, Genetic, Genotype, Globins, Humans, Internet, Mutation, Phenotype, Phenylalanine Hydroxylase, Protein-Tyrosine Kinases, Receptors, Androgen, Software Design, Systems Integration