Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

MLL fusion proteins are oncogenic transcription factors that are associated with aggressive lymphoid and myeloid leukemias. We constructed an inducible MLL fusion, MLL-ENL-ERtm, that rendered the transcriptional and transforming properties of MLL-ENL strictly dependent on the presence of 4-hydroxy-tamoxifen. MLL-ENL-ERtm-immortalized hematopoietic cells required 4-hydroxy-tamoxifen for continuous growth and differentiated terminally upon tamoxifen withdrawal. Microarray analysis performed on these conditionally transformed cells revealed Hoxa9 and Hoxa7 as well as the Hox coregulators Meis1 and Pbx3 among the targets upregulated by MLL-ENL-ERtm. Overexpression of the Hox repressor Bmi-1 inhibited the growth-transforming activity of MLL-ENL. Moreover, the enforced expression of Hoxa9 in combination with Meis1 was sufficient to substitute for MLL-ENL-ERtm function and to maintain a state of continuous proliferation and differentiation arrest. These results suggest that MLL fusion proteins impose a reversible block on myeloid differentiation through aberrant activation of a limited set of homeobox genes and Hox coregulators that are consistently expressed in MLL-associated leukemias.

Original publication

DOI

10.1128/MCB.24.2.617-628.2004

Type

Journal article

Journal

Mol Cell Biol

Publication Date

01/2004

Volume

24

Pages

617 - 628

Keywords

Animals, Cell Line, Cell Transformation, Neoplastic, Down-Regulation, Genes, Homeobox, Homeodomain Proteins, Humans, Leukemia, Mice, Myeloid Ecotropic Viral Integration Site 1 Protein, Myeloid-Lymphoid Leukemia Protein, Neoplasm Proteins, Oncogene Proteins, Fusion, Receptors, Estrogen, Tamoxifen, Up-Regulation