Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The transcription factors mediating the development of CD1d-restricted invariant NKT (iNKT) cells remain incompletely described. Here, we show that loss of the AP-1 transcription factor Fra-2 causes a marked increase in the number of both thymic and peripheral iNKT cells, without affecting the development of other T-lineage cells. The defect is cell-autonomous and is evident in the earliest iNKT precursors. We find that iNKT cells expressing the lower affinity TCRVbeta8 are proportionally overrepresented in the absence of Fra-2, indicating altered selection of iNKT cells. There is also widespread dysregulation of AP-1-directed gene expression. In the periphery, mature Fra-2-deficient iNKT cells are able to participate in an immune response, but they have an altered response to Ag, showing increased expansion and producing increased amounts of IL-2 and IL-4 compared with their wild-type counterparts. Unusually, naive Fra-2-deficient T cells also rapidly produce IL-2 and IL-4 upon activation. Taken together, these data define Fra-2 as necessary for regulation of normal iNKT cell development and function, and they demonstrate the central role played by the AP-1 family in this lineage.

Original publication

DOI

10.4049/jimmunol.0803577

Type

Journal article

Journal

J Immunol

Publication Date

15/08/2009

Volume

183

Pages

2575 - 2584

Keywords

Amino Acid Sequence, Animals, Cell Differentiation, Cell Proliferation, Fos-Related Antigen-2, Gene Deletion, Interleukin-2, Interleukin-4, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Molecular Sequence Data, Natural Killer T-Cells, Thymus Gland, Transcription Factor AP-1