Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We established the molecular basis for pyruvate kinase (PK) deficiency in a white male patient with severe nonspherocytic hemolytic anemia. The paternal allele exhibited the common PKLR cDNA sequence (c.) 1529G>A mutation, known to be associated with PK deficiency. On the maternal allele, 3 in cis mutations were identified in the erythroid-specific promoter region of the gene: one deletion of thymine -248 and 2 single nucleotide substitutions, nucleotide (nt) -324T>A and nt -83G>C. Analysis of the patient's RNA demonstrated the presence of only the 1529A allele, indicating severely reduced transcription from the allele linked to the mutated promoter region. Transfection of promoter constructs into erythroleukemic K562 cells showed that the most upstream -324T>A and -248delT mutations were nonfunctional polymorphisms. In contrast, the -83G>C mutation strongly reduced promoter activity. Site-directed mutagenesis of the promoter region revealed the presence of a putative regulatory element (PKR-RE1) whose core binding motif, CTCTG, is located between nt -87 and nt -83. Electrophoretic mobility shift assay using K562 nuclear extracts indicated binding of an as-yet-unidentified trans-acting factor. This novel element mediates the effects of factors necessary for regulation of pyruvate kinase gene expression during red cell differentiation and maturation.

Original publication

DOI

10.1182/blood-2002-07-2321

Type

Journal article

Journal

Blood

Publication Date

15/02/2003

Volume

101

Pages

1596 - 1602

Keywords

Alleles, Anemia, Hemolytic, Base Sequence, Child, Denmark, Erythrocytes, Gene Deletion, Gene Expression, Gene Frequency, Glucosephosphate Dehydrogenase, Hexokinase, Humans, Leukemia, Erythroblastic, Acute, Male, Molecular Sequence Data, Mutagenesis, Site-Directed, Promoter Regions, Genetic, Pyruvate Kinase, Regulatory Sequences, Nucleic Acid, Reverse Transcriptase Polymerase Chain Reaction, Sequence Analysis, DNA, Transfection, Tumor Cells, Cultured