Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related condition associated with increased mortality among patients with cancer. CHIP mutations with high variant-allele frequencies can be detected in tumors, a phenomenon we term tumor-infiltrating clonal hematopoiesis (TI-CH). The frequency of TI-CH and its effect on tumor evolution are unclear. METHODS: We characterized CHIP and TI-CH in 421 patients with early-stage non-small-cell lung cancer (NSCLC) from the TRACERx study and in 49,351 patients from the MSK-IMPACT pan-cancer cohort. We studied the association of TI-CH with survival and disease recurrence and evaluated the functional effect of TET2-mutant CHIP on the biologic features of lung tumors. RESULTS: Among patients with NSCLC, 42% of those with CHIP had TI-CH. TI-CH independently predicted an increased risk of death or recurrence, with an adjusted hazard ratio of 1.80 (95% confidence interval [CI], 1.23 to 2.63) as compared with the absence of CHIP and an adjusted hazard ratio of 1.62 (95% CI, 1.02 to 2.56) as compared with CHIP in the absence of TI-CH. Among patients with solid tumors, 26% of those with CHIP had TI-CH. TI-CH conferred a risk of death from any cause that was 1.17 times (95% CI, 1.06 to 1.29) as high as the risk with CHIP in the absence of TI-CH. TET2 mutations were the strongest genetic predictor of TI-CH; such mutations enhanced monocyte migration to lung tumor cells, fueled a myeloid-rich tumor microenvironment in mice, and resulted in the promotion of tumor organoid growth. CONCLUSIONS: TI-CH increased the risk of disease recurrence or death among patients with NSCLC and the risk of death from any cause among patients with solid tumors. TI-CH remodeled the tumor immune microenvironment and accelerated tumor organoid growth, findings that support a role for an aging-related hematologic clonal proliferation in cancer evolution. (Funded by the Royal Society and others.).

Original publication

DOI

10.1056/NEJMoa2413361

Type

Journal article

Journal

N Engl J Med

Publication Date

24/04/2025

Volume

392

Pages

1594 - 1608

Keywords

Aged, Animals, Female, Humans, Male, Mice, Middle Aged, Carcinoma, Non-Small-Cell Lung, Clonal Hematopoiesis, Dioxygenases, DNA-Binding Proteins, Lung Neoplasms, Mutation, Neoplasm Recurrence, Local, Tumor Microenvironment, Monocytes, Cell Movement, Prospective Studies, Observational Studies as Topic, Cell Line, Tumor, Neoplasm Transplantation