Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Insect biomass is declining globally, likely driven by climate change and pesticide use, yet systematic studies on the effects of various chemicals remain limited. In this work, we used a chemical library of 1024 molecules-covering insecticides, herbicides, fungicides, and plant growth inhibitors-to assess the impact of sublethal pesticide doses on insects. In Drosophila melanogaster, 57% of chemicals affected larval behavior, and a higher proportion compromised long-term survivability. Exposure to sublethal doses also induced widespread changes in the phosphoproteome and changes in development and reproduction. The negative effects of agrochemicals were amplified when the temperature was increased. We observed similar behavioral changes across multiple insect species, including mosquitoes and butterflies. These findings suggest that widespread sublethal pesticide exposure can alter insect behavior and physiology, threatening long-term population survival.

Original publication

DOI

10.1126/science.ado0251

Type

Journal article

Journal

Science

Publication Date

25/10/2024

Volume

386

Pages

446 - 453

Keywords

Animals, Agrochemicals, Behavior, Animal, Butterflies, Drosophila melanogaster, Herbicides, Insecticides, Larva, Reproduction, Small Molecule Libraries, Temperature, Insecta, Proteome, Hot Temperature, Extinction, Biological, Dose-Response Relationship, Drug