Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The discovery in 1994 that highly specific mutations of fibroblast growth factor (FGF) receptor 3 caused the most common form of human short-limbed dwarfism, achondroplasia, heralded a new era in FGF receptor (FGFR) biology. A decade later, the purpose of this review is to survey how the study of humans with FGFR mutations continues to provide insights into FGFR function in health and disease, and the clinical applications of these findings. Amongst the most interesting recent discoveries have been the description of novel phenotypes associated with FGFR1 and FGFR3 mutations; identification of fundamental differences in the cellular mechanisms of mutant FGFR2 and FGFR3 action; and the direct identification of FGFR2 and FGFR3 mutations in sperm. These clinical observations illustrate the pleiotropism of FGFR action and fuel ongoing efforts to understand the rich biology and pathophysiology of the FGF signalling system.

Original publication

DOI

10.1016/j.cytogfr.2005.03.001

Type

Journal article

Journal

Cytokine Growth Factor Rev

Publication Date

04/2005

Volume

16

Pages

187 - 203

Keywords

Bone Diseases, Developmental, Craniosynostoses, Genetic Counseling, Germ-Line Mutation, Humans, Male, Olfaction Disorders, Phenotype, Protein-Tyrosine Kinases, Receptor Protein-Tyrosine Kinases, Receptor, Fibroblast Growth Factor, Type 1, Receptor, Fibroblast Growth Factor, Type 2, Receptor, Fibroblast Growth Factor, Type 3, Receptors, Fibroblast Growth Factor, Signal Transduction, Spermatozoa