Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To define the PKD1 locus further, the gene involved in the most frequent form of adult polycystic kidney disease, probes from 16 polymorphic loci were mapped on 16p13.1-pter with the combined use of cell lines containing rearranged chromosomes and family studies. Five breakpoints in the distal part of 16p arbitrarily subdivided the loci into five groups. By analysing 58 recombination events among 259 informative meioses in 12 large families with PKD, we were able to construct a linkage map for the distal part of 16p. The order of the markers obtained with chromosomal rearrangements was confirmed by the family studies. The D16S85 locus near alpha globin, D16S21, and D16S83 map distal, or telomeric, to PKD1. The polymorphic red cell enzyme phosphoglycolate phosphatase (PGP), D16S84, D16S259, and D16S246 showed no recombination with PKD1. The remaining nine RFLPs all map proximal to the PKD1 gene. By cosmid walking, additional RFLPs were detected at the D16S21 locus. A single intrahaplotype recombination observed defines the orientation of D16S21 relative to PKD1. The new polymorphisms are valuable for presymptomatic and prenatal diagnosis of PKD1. Furthermore, our map is both a good starting point for the physical map of 16p and a useful tool for the isolation of the PKD1 gene.

Original publication

DOI

10.1136/jmg.27.10.603

Type

Journal article

Journal

J Med Genet

Publication Date

10/1990

Volume

27

Pages

603 - 613

Keywords

Adult, Chromosomes, Human, Pair 16, DNA Probes, Family, Female, Genes, Dominant, Genetic Linkage, Genetic Markers, Humans, Male, Polycystic Kidney Diseases, Polymorphism, Restriction Fragment Length, Recombination, Genetic, Translocation, Genetic