Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new study published this week in Nature, provides the most detailed analysis so far of the prenatal development of blood and immune cells in the bone marrow.

A longitudinal section of fetal femur with multiplex immunofluorescent staining, showing CD34 in red and VEGFR2 in green.

Throughout development our cells are in continual need of oxygen and nutrients and need to build the components of a sophisticated immune system ready to protect us from the moment of birth. The cells that do this are all provided by the blood and immune system. The emergence of these systems happens in multiple phases across several organs in a process known as haematopoiesis. Early in development, production of both red blood cells and immune cells begins in the yolk sac, before transitioning to the fetal liver, and then to the fetal bone marrow where it begins a life-long role.

In the study, which is part of the Human Cell Atlas (HCA) initiative to provide comprehensive reference maps of every cell type in the human body, researchers from a range of institutions including Professor Irene Roberts and Associate Professor Andi Roy both of the MRC Molecular Haematology Unit, the MRC Weatherall Institute of Molecular Medicine and the Department of Paediatrics at the University of Oxford, pinpoint a specific 6-7 week window in the second trimester, during which the full range of blood and immune cells are established in the bone marrow.

This data will be a valuable reference for researchers exploring the nature of the blood and immune system, especially where changes in those processes lead to diseases such as cancers. As part of the project researchers also studied Down syndrome bone marrow. Children with Down syndrome are known to be at increased risk of childhood leukaemias as well as immune deficiency and autoimmune diseases, making understanding development of the immune and blood systems incredibly important.

Professor Irene Roberts, a senior author of the paper said: “We know that children with Down syndrome have a higher risk of developing leukaemia but we don’t know why. This study characterises some of the differences in gene expression in their bone marrow, which will allow us to start figuring out whether these differences are significant and in what way. We hope this will ultimately help researchers develop better ways of treating, or even preventing, leukaemia in these children.”

“This project allowed us to study how haematopoiesis is established before birth in the bone marrow, the site for subsequent lifelong blood cell production. More importantly we show the utility of datasets such as this in understanding the effects on human health when these processes are perturbed”  said Professor Andi Roy a senior co-author of the paper.

This research was funded by Wellcome, the Medical Research Council (MRC) and funding to individual authors. Both Professor Irene Roberts and Professor Andi Roy’s work is funded by the NIHR Oxford Biomedical Research Centre.

Read the full press release from the Wellcome Trust Sanger Institute here.

Read the full paper here

Similar stories

Nucleome Therapeutics raises oversubscribed £37.5 million Series A financing

The biotechnology company builds upon research conducted by Professor Jim Hughes and Prof. James Davies at the MRC Weatherall Institute of Molecular Medicine, and combines 3D genome technology and machine learning to decode the dark matter of the human genome.

KJ Patel appointed new Chief Scientist of CRUK

Alongside his new role at Cancer Research UK, Prof. Patel will continue as the Director of both the MRC Weatherall Institute for Molecular Medicine (MRC WIMM) and the MRC Molecular Haematology Unit (MRC MHU).

September is Childhood Cancer Awareness Month

September is Childhood Cancer Awareness Month, where our Childhood Leukaemia research group have taken action to help raise awareness for this cause.

Wellcome Trust funding success for Jim Hughes and James Davies

£3.6 million in funding awarded by the Wellcome Trust to combine cutting-edge 3D genome technologies with machine learning approaches to decipher the role of the non-coding genome in disease.