Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Gene expression shapes the nervous system at every biological level, from molecular and cellular processes defining neuronal identity and function to systems-level wiring and circuit dynamics underlying behavior. Here, we generate the first high-resolution, single-cell transcriptomic atlas of the adult Drosophila melanogaster central brain by integrating multiple datasets, achieving an unprecedented 10-fold coverage of every neuron in this complex tissue. We show that a neuron's genetic identity overwhelmingly reflects its developmental origin, preserving a genetic address based on both lineage and birth order. We reveal foundational rules linking neurogenesis to transcriptional identity and provide a framework for systematically defining neuronal types. This atlas provides a powerful resource for mapping the cellular substrates of behavior by integrating annotations of hemilineage, cell types/subtypes, and molecular signatures of underlying physiological properties. It lays the groundwork for a long-sought bridge between developmental processes and the functional circuits that give rise to behavior.

Original publication

DOI

10.1016/j.xgen.2025.101103

Type

Journal article

Journal

Cell Genom

Publication Date

19/12/2025

Keywords

Drosophila melanogaster, atlas, birth order, brain, development, hemilineage, lineage, nervous system, neuron, scRNA-seq