A high-resolution atlas of the brain predicts lineage and birth order underlying neuronal identity.
Allen AM., Neville MC., Nojima T., Alejevski F., Agarwal D., Sims D., Goodwin SF.
Gene expression shapes the nervous system at every biological level, from molecular and cellular processes defining neuronal identity and function to systems-level wiring and circuit dynamics underlying behavior. Here, we generate the first high-resolution, single-cell transcriptomic atlas of the adult Drosophila melanogaster central brain by integrating multiple datasets, achieving an unprecedented 10-fold coverage of every neuron in this complex tissue. We show that a neuron's genetic identity overwhelmingly reflects its developmental origin, preserving a genetic address based on both lineage and birth order. We reveal foundational rules linking neurogenesis to transcriptional identity and provide a framework for systematically defining neuronal types. This atlas provides a powerful resource for mapping the cellular substrates of behavior by integrating annotations of hemilineage, cell types/subtypes, and molecular signatures of underlying physiological properties. It lays the groundwork for a long-sought bridge between developmental processes and the functional circuits that give rise to behavior.