Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In hereditary hemochromatosis, iron overload is associated with homozygosity for the p.C282Y mutation. A second mutation, p.H63D, occurs at significant frequencies in Europe, North Africa, the Middle East and Asia. Early studies in Sri Lanka indicated that the variant had arisen independently, suggesting that it had been the subject of selective pressure. However, its role in iron absorption is unclear. In a survey of 7526 Sri Lankan secondary school students, we determined hemoglobin genotype and measured red cell indices, serum ferritin, transferrin receptor, iron zinc protoporphyrin and hepcidin. These variables were compared according to the presence or absence of the p.H63D variant in a subset of 1313 students for whom DNA samples were available. Students were classified as having low red cell indices if they had an MCV <80 fl and/or MCH <27 pg. Hetero and/or homozygosity for the p.H63D variant was more common in students with normal than low red cell indices (16.4% and 11.9% respectively; p = 0.019). Iron biomarkers and red cell indices were greater in children with the p.H63D variant than in normal and this was statistically significant for MCV (p = 0.046). Our findings suggest that selective pressure by mild iron deficiency contributes to the high frequencies of the p.H63D variant.

Original publication

DOI

10.1016/j.bcmd.2019.02.004

Type

Journal article

Journal

Blood Cells Mol Dis

Publication Date

05/2019

Volume

76

Pages

72 - 77

Keywords

Anemia, H63D, Hemochromatosis, Iron deficiency, Low red cell indices, Mean cell volume, Adolescent, Alleles, Anemia, Iron-Deficiency, Child, Erythrocyte Indices, Genetic Variation, Hemochromatosis, Hemochromatosis Protein, Humans, Iron, Selection, Genetic, Sri Lanka