Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Interrogation of gene regulatory circuits in complex organisms requires precise and robust methods to label cell-types for profiling of target proteins in a tissue-specific fashion as well as data analysis to understand interconnections within the circuits. There are several strategies for obtaining cell-type and subcellular specific genome-wide data. We have developed a methodology, termed "biotagging" that uses tissue-specific, genetically encoded components to biotinylate target proteins, enabling in depth genome-wide profiling in zebrafish. We have refined protocols to use the biotagging approach that led to enhanced isolation of coding and non-coding RNAs from ribosomes and nuclei of genetically defined cell-types. The ability to study both the actively translated and transcribed transcriptome in the same cell population, coupled to genomic accessibility assays has enabled the study of cell-type specific gene regulatory circuits in zebrafish due to the high signal-to-noise achieved via its stringent purification protocol. Here, we provide detailed methods to isolate, profile and analyze cell-type specific polyribosome and nuclear transcriptome in zebrafish.

Original publication




Journal article



Publication Date





24 - 31


Cell-type specific in vivo biotinylation, Enhancer RNA, Nuclear transcriptome, Animals, Biotinylation, Cell Fractionation, Gene Expression Profiling, Gene Regulatory Networks, Polyribosomes, RNA, Staining and Labeling, Transcriptome, Zebrafish