PCR-based methods for detecting DNA damage and its repair at the sub-gene and single nucleotide levels in cells.
Grimaldi KA., McGurk CJ., McHugh PJ., Hartley JA.
Three PCR-based methods are described that allow covalent drug-DNA adducts, and their repair, to be studied at various levels of resolution from gene regions to the individual nucleotide level in single copy genes. A quantitative PCR (QPCR) method measures the total damage on both DNA strands in a gene region, usually between 300 and 3,000 base pairs in length. Strand-specific QPCR incorporates adaptations that allow damage to be measured in the same region as QPCR but in a strand-specific manner. Single-strand ligation PCR allows the detection of adduct formation at the level of single nucleotides, on individual strands, in a single copy gene in mammalian cells. If antibodies to the DNA adducts of interest are available, these can be used to capture and isolate adducted DNA for use in single-strand ligation PCR increasing the sensitivity of the assay.