Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Late-phase clinical trials investigating metformin as a cancer therapy are underway. However, there remains controversy as to the mode of action of metformin in tumors at clinical doses. We conducted a clinical study integrating measurement of markers of systemic metabolism, dynamic FDG-PET-CT, transcriptomics, and metabolomics at paired time points to profile the bioactivity of metformin in primary breast cancer. We show metformin reduces the levels of mitochondrial metabolites, activates multiple mitochondrial metabolic pathways, and increases 18-FDG flux in tumors. Two tumor groups are identified with distinct metabolic responses, an OXPHOS transcriptional response (OTR) group for which there is an increase in OXPHOS gene transcription and an FDG response group with increased 18-FDG uptake. Increase in proliferation, as measured by a validated proliferation signature, suggested that patients in the OTR group were resistant to metformin treatment. We conclude that mitochondrial response to metformin in primary breast cancer may define anti-tumor effect.

Original publication

DOI

10.1016/j.cmet.2018.08.021

Type

Journal article

Journal

Cell Metab

Publication Date

06/11/2018

Volume

28

Pages

679 - 688.e4

Keywords

breast neoplasms, cancer metabolism, clinical study, gene expression profiling, metabolomics, metformin, mitochondria, positron emission tomography, Adult, Aged, Antineoplastic Agents, Breast Neoplasms, Female, Gene Expression Regulation, Neoplastic, Glucose, Humans, Hypoglycemic Agents, Metabolic Networks and Pathways, Metformin, Middle Aged, Mitochondria, Positron Emission Tomography Computed Tomography, Transcriptome