Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE OF REVIEW: When providing accurate clinical diagnosis and genetic counseling in craniosynostosis, the challenge is heightened by knowledge that etiology in any individual case may be entirely genetic, entirely environmental, or anything in between. This review will scope out how recent genetic discoveries from next-generation sequencing have impacted on the clinical genetic evaluation of craniosynostosis. RECENT FINDINGS: Survey of a 13-year birth cohort of patients treated at a single craniofacial unit demonstrates that a genetic cause of craniosynostosis can be identified in one quarter of cases. The substantial contributions of mutations in two genes, TCF12 and ERF, is confirmed. Important recent discoveries are mutations of CDC45 and SMO in specific craniosynostosis syndromes, and of SMAD6 in nonsyndromic midline synostosis. The added value of exome or whole genome sequencing in the diagnosis of difficult cases is highlighted. SUMMARY: Strategies to optimize clinical genetic diagnostic pathways by combining both targeted and next-generation sequencing are discussed. In addition to improved genetic counseling, recent discoveries spotlight the important roles of signaling through the bone morphogenetic protein and hedgehog pathways in cranial suture biogenesis, as well as a key requirement for adequate cell division in suture maintenance.

Original publication

DOI

10.1097/MOP.0000000000000542

Type

Journal article

Journal

Curr Opin Pediatr

Publication Date

12/2017

Volume

29

Pages

622 - 628

Keywords

Craniosynostoses, Genetic Counseling, Genetic Markers, Genetic Predisposition to Disease, Genetic Testing, High-Throughput Nucleotide Sequencing, Humans, Mutation, Whole Exome Sequencing