Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Mgm101 has well-characterized activity for the repair and replication of the mitochondrial genome. Recent work has demonstrated a further role for Mgm101 in nuclear DNA metabolism, contributing to an S-phase specific DNA interstrand cross-link repair pathway that acts redundantly with a pathway controlled by Pso2 exonuclease. Due to involvement of FANCM, FANCJ and FANCP homologues (Mph1, Chl1 and Slx4), this pathway has been described as a Fanconi anemia-like pathway. In this pathway, Mgm101 physically interacts with the DNA helicase Mph1 and the MutSα (Msh2/Msh6) heterodimer, but its precise role is yet to be elucidated. Data presented here suggests that Mgm101 functionally overlaps with Rad52, supporting previous suggestions that, based on protein structure and biochemical properties, Mgm101 and Rad52 belong to a family of proteins with similar function. In addition, our data shows that this overlap extends to the function of both proteins at telomeres, where Mgm101 is required for telomere elongation during chromosome replication in rad52 defective cells. We hypothesize that Mgm101 could, in Rad52-like manner, preferentially bind single-stranded DNAs (such as at stalled replication forks, broken chromosomes and natural chromosome ends), stabilize them and mediate single-strand annealing-like homologous recombination event to prevent them from converting into toxic structures.

Original publication

DOI

10.1080/15384101.2016.1231288

Type

Journal article

Journal

Cell cycle (Georgetown, Tex.)

Publication Date

12/2016

Volume

15

Pages

3169 - 3176

Addresses

a Department of Genetics , Cancer Research Institute, Biomedical Research Center, Slovak Academy of Science , Bratislava , Slovak Republic.

Keywords

Telomere, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Evolution, Molecular, DNA Repair, Conserved Sequence, Rad52 DNA Repair and Recombination Protein