MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome.
Stavropoulou V., Kaspar S., Brault L., Sanders MA., Juge S., Morettini S., Tzankov A., Iacovino M., Lau I-J., Milne TA., Royo H., Kyba M., Valk PJM., Peters AHFM., Schwaller J.
To address the impact of cellular origin on acute myeloid leukemia (AML), we generated an inducible transgenic mouse model for MLL-AF9-driven leukemia. MLL-AF9 expression in long-term hematopoietic stem cells (LT-HSC) in vitro resulted in dispersed clonogenic growth and expression of genes involved in migration and invasion. In vivo, 20% LT-HSC-derived AML were particularly aggressive with extensive tissue infiltration, chemoresistance, and expressed genes related to epithelial-mesenchymal transition (EMT) in solid cancers. Knockdown of the EMT regulator ZEB1 significantly reduced leukemic blast invasion. By classifying mouse and human leukemias according to Evi1/EVI1 and Erg/ERG expression, reflecting aggressiveness and cell of origin, and performing comparative transcriptomics, we identified several EMT-related genes that were significantly associated with poor overall survival of AML patients.