Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Maintaining physiologic iron concentrations in tissues is critical for metabolism and host defense. Iron absorption in the duodenum, recycling of iron from senescent erythrocytes, and iron mobilization from storage in macrophages and hepatocytes constitute the major iron flows into plasma for distribution to tissues, predominantly for erythropoiesis. All iron transfer to plasma occurs through the iron exporter ferroportin. The concentration of functional membrane-associated ferroportin is controlled by its ligand, the iron-regulatory hormone hepcidin, and fine-tuned by regulatory mechanisms serving iron homeostasis, oxygen utilization, host defense, and erythropoiesis. Fundamental questions about the structure and biology of ferroportin remain to be answered.

Original publication

DOI

10.1016/j.cmet.2015.09.006

Type

Journal article

Journal

Cell Metab

Publication Date

03/11/2015

Volume

22

Pages

777 - 787

Keywords

Animals, Cation Transport Proteins, Erythrocytes, Erythropoiesis, Hepatocytes, Hepcidins, Homeostasis, Humans, Iron, Macrophages