Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this paper we show that DNA polymerase lambda (pol lambda) interacts with proliferating cell nuclear antigen (PCNA) in vivo in human cells. Moreover, by using recombinant mutated PCNA, we could demonstrate that pol lambda interacts with both the interdomain-connecting loop and the nearby hydrophobic pocket on the anterior of PCNA and that critical residues within a helix-hairpin-helix domain of pol lambda, important for proper DNA primer binding, are also involved in the enzyme's interaction with PCNA. Finally, we show that the tumor suppressor protein p21(WAF1/CIP1) can efficiently compete in vitro with pol lambda for binding to PCNA. Given the high rate of frameshift mutations induced by pol lambda and its ability to bypass abasic sites, accurate regulation of pol lambda activity by PCNA and p21 concerted action might be important for preventing genetic instability.

Original publication




Journal article



Publication Date





1743 - 1745


Binding Sites, Binding, Competitive, Cell Cycle Proteins, Cyclin-Dependent Kinase Inhibitor p21, DNA Polymerase beta, DNA Primers, Humans, Immunoprecipitation, Mutation, Proliferating Cell Nuclear Antigen, Protein Structure, Tertiary