Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Wnt signaling is important for T-cell differentiation at the early CD4(-)CD8(-) stage and is subsequently downregulated with maturation. To assess the importance of this downregulation, we generated a mouse line (R26-βcat) in which high levels of active β-catenin are maintained throughout T-cell development. Young R26-βcat mice show a differentiation block at the CD4(+)CD8(+) double-positive (DP) stage. These DP cells exhibit impaired apoptosis upon irradiation or dexamethasone treatment. All R26-βcat mice develop T-cell leukemias at 5 to 6 months of age. R26-βcat leukemias remain dependent on β-catenin function but lack Notch pathway activation. They exhibit recurrent secondary genomic rearrangements that lead to Myc overexpression and loss of Pten activity. Because β-catenin activation and Myc translocations were previously found in murine T-cell acute lymphoblastic leukemias (T-ALLs) deficient for Pten, our results suggest that activation of the canonical Wnt pathway is associated with a subtype of Notch-independent T-ALLs that bear Myc gene rearrangements and Pten mutations.

Original publication

DOI

10.1182/blood-2012-12-471904

Type

Journal article

Journal

Blood

Publication Date

01/08/2013

Volume

122

Pages

694 - 704

Keywords

Animals, Cell Differentiation, Gene Deletion, Gene Expression Regulation, Leukemic, Genes, myc, Mice, Mice, Transgenic, Mutation, PTEN Phosphohydrolase, Precursor T-Cell Lymphoblastic Leukemia-Lymphoma, Receptors, Notch, T-Lymphocytes, Up-Regulation, Wnt Signaling Pathway, beta Catenin