Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The extracellular matrix protein TGFBI enhances the cytotoxic response of cancer cells to paclitaxel by affecting integrin signals that stabilize microtubules. Extending the implications of this knowledge, we tested the more general hypothesis that cancer cell signals which increase microtubule stability before exposure to paclitaxel may increase its ability to stabilize microtubules and thereby enhance its cytotoxicity. Toward this end, we carried out an siRNA screen to evaluate how genetic depletion affected microtubule stabilization, cell viability, and apoptosis. High content microscopic analysis was carried out in the absence or presence of paclitaxel. Kinase knockdowns that stabilized microtubules strongly enhanced the effects of paclitaxel treatment. Conversely, kinase knockdowns that enhanced paclitaxel-mediated cytotoxicity sensitized cells to microtubule stabilization by paclitaxel. The siRNA screen identified several genes that have not been linked previously to microtubule regulation or paclitaxel response. Gene shaving and Bayesian resampling used to classify these genes suggested three pathways of paclitaxel-induced cell death related to apoptosis and microtubule stability, apoptosis alone, or neither process. Our results offer a functional classification of the genetic basis for paclitaxel sensitivity and they support the hypothesis that stabilizing microtubules prior to therapy could enhance antitumor responses to paclitaxel treatment.

Original publication




Journal article


Cancer Res

Publication Date





5806 - 5817


Cell Line, Tumor, Cytotoxins, Drug Resistance, Neoplasm, Humans, Microtubules, Neoplasms, Paclitaxel, RNA, Small Interfering, Tubulin Modulators