Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Despite recent advances in individualised targeted therapy, gastric cancer remains one of the most challenging diseases in gastrointestinal oncology. Modern imaging techniques using endoscopic filter devices and in vivo molecular imaging are designed to enable early detection of the cancer and surveillance of patients at risk. Molecular characterisation of the tumour itself as well as of the surrounding inflammatory environment is more sophisticated in the view of tailored therapies and individual prognostic assessment. The broad application of high throughput techniques for the description of genome wide patterns of structural (copy number aberrations, single nucleotide polymorphisms, methylation pattern) and functional (gene expression profiling, proteomics, miRNA) alterations in the cancer tissue lead not only to a better understanding of the tumour biology but also to a description of gastric cancer subtypes independent from classical stratification systems. Biostatistical means are required for the interpretation of the massive amount of data generated by these approaches. In this review we give an overview on the current knowledge of diagnostic methods for detection, description and understanding of gastric cancer disease.

Original publication

DOI

10.2741/4210

Type

Journal

Frontiers in bioscience (Landmark edition)

Publication Date

01/2014

Volume

19

Pages

312 - 338

Addresses

Dept. of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.

Keywords

Humans, Stomach Neoplasms, Molecular Diagnostic Techniques