Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present the performance of 41Ca measurements using low-energy Accelerator Mass Spectrometry (AMS) at the 500 kV facility TANDY at ETH Zurich. We optimized the measurement procedure for biomedical applications where reliability and high sample throughput is required. The main challenge for AMS measurements of 41Ca is the interfering stable isobar 41K. We use a simplified sample preparation procedure to produce calcium fluoride (CaF2) and extract calcium tri-fluoride ions (CaF3-) ions to suppress the stable isobar 41K. Although 41K is not completely suppressed we reach 41Ca/40Ca background level in the 10-12 range which is adequate for biomedical studies. With helium as a stripper gas we can use charge state 2+ at high transmission (∼50%). The new measurement procedure with the approximately 10× improved efficiency and the higher accuracy due to 41K correction allowed us to measure more than 600 samples for a large biomedical study within only a few weeks of measurement time.

Original publication

DOI

10.1016/j.nimb.2015.05.014

Type

Journal article

Journal

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Publication Date

15/10/2015

Volume

361

Pages

273 - 276