Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Although ferric pyrophosphate is a promising compound for iron fortification of foods, few data are available on the effect of food matrices, processing, and ascorbic acid on its bioavailability. OBJECTIVE: We compared the relative bioavailability (RBV) of ferrous sulfate in an experimental form of micronized dispersible ferric pyrophosphate (MDFP) in a wheat-milk infant cereal given with and without ascorbic acid with the RBV of MDFP from a processed and unprocessed rice meal. DESIGN: A crossover design was used to measure iron absorption in young women (n = 26) from test meals fortified with isotopically labeled [57Fe]-MDFP and [58Fe]-ferrous sulfate, based on erythrocyte incorporation of stable isotope labels 14 d later. RESULTS: Geometric mean iron absorption from the wheat-based meal fortified with MDFP was 2.0% and that from the meal fortified with ferrous sulfate was 3.2% (RBV = 62). The addition of ascorbic acid at a molar ratio of 4:1 to iron increased iron absorption from MDFP to 5.8% and that from ferrous sulfate to 14.8% (RBV = 39). In the rice meals, mean iron absorption from MDFP added to the rice at the time of feeding was 1.7%, and that from ferrous sulfate was 11.6% (RBV = 15). The mean iron absorption from MDFP extruded into artificial rice grains was 3.0% and that from ferrous sulfate in unprocessed rice was 12.6% (RBV = 24). Sixteen of 26 subjects were iron deficient. Iron status was a highly significant predictor of the RBV of MDFP (P < 0.001). CONCLUSION: RBV of the experimental MDFP varied markedly with food matrix and iron status. Assigning a single RBV value to poorly soluble compounds may be of limited value in evaluating their suitability for food fortification.

Original publication

DOI

10.1093/ajcn.83.3.632

Type

Journal article

Journal

Am J Clin Nutr

Publication Date

03/2006

Volume

83

Pages

632 - 638

Keywords

Absorption, Adult, Antioxidants, Ascorbic Acid, Biological Availability, Cross-Over Studies, Diphosphates, Female, Ferritins, Ferrous Compounds, Food, Food Handling, Food, Fortified, Humans, Intestinal Absorption, Iron, Iron Isotopes, Nutritional Status, Oryza, Triticum