Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Fe supplementation is a common strategy to correct Fe-deficiency anaemia in children; however, it may modify the gut microbiota and increase the risk for enteropathogenic infection. In the present study, we studied the impact of Fe supplementation on the abundance of dominant bacterial groups in the gut, faecal SCFA concentration and gut inflammation in children living in rural South Africa. In a randomised, placebo-controlled intervention trial of 38 weeks, 6- to 11-year-old children with Fe deficiency received orally either tablets containing 50 mg Fe as FeSO₄ (n 22) for 4 d/week or identical placebo (n 27). In addition, Fe-sufficient children (n 24) were included as a non-treated reference group. Faecal samples were analysed at baseline and at 2, 12 and 38 weeks to determine the effects of Fe supplementation on ten bacterial groups in the gut (quantitative PCR), faecal SCFA concentration (HPLC) and gut inflammation (faecal calprotectin concentration). At baseline, concentrations of bacterial groups in the gut, faecal SCFA and faecal calprotectin did not differ between Fe-deficient and Fe-sufficient children. Fe supplementation significantly improved Fe status in Fe-deficient children and did not significantly increase faecal calprotectin concentration. Moreover, no significant effect of Fe treatment or time × treatment interaction on the concentrations of bacterial groups in the gut or faecal SCFA was observed compared with the placebo treatment. Also, there were no significant differences observed in the concentrations of any of the bacterial target groups or faecal SCFA at 2, 12 or 38 weeks between the three groups of children when correcting for baseline values. The present study suggests that in African children with a low enteropathogen burden, Fe status and dietary Fe supplementation did not significantly affect the dominant bacterial groups in the gut, faecal SCFA concentration or gut inflammation.

Original publication

DOI

10.1017/S0007114514001160

Type

Journal article

Journal

Br J Nutr

Publication Date

28/08/2014

Volume

112

Pages

547 - 556

Keywords

Anemia, Iron-Deficiency, Child, Dietary Supplements, Fatty Acids, Volatile, Feces, Female, Ferrous Compounds, Gastroenteritis, Gastrointestinal Agents, Gram-Negative Bacteria, Gram-Positive Bacteria, Hematinics, Humans, Incidence, Intestinal Mucosa, Iron, Dietary, Leukocyte L1 Antigen Complex, Lower Gastrointestinal Tract, Male, Microbial Viability, Rural Health, South Africa