Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Yellow-fleshed potatoes biofortified with iron have been developed through conventional breeding, but the bioavailability of iron is unknown. OBJECTIVES: Our objective was to measure iron absorption from an iron-biofortified yellow-fleshed potato clone in comparison with a nonbiofortified yellow-fleshed potato variety. METHODS: We conducted a single-blinded, randomized, crossover, multiple-meal intervention study. Women (n = 28; mean ± SD plasma ferritin 21.3 ± 3.3 μg/L) consumed 10 meals (460 g) of both potatoes, each meal extrinsically labeled with either 58Fe sulfate (biofortified) or 57Fe sulfate (nonfortified), on consecutive days. Iron absorption was estimated from iron isotopic composition in erythrocytes 14 d after administration of the final meal. RESULTS: Mean ± SD iron, phytic acid, and ascorbic acid concentrations in iron-biofortified and the nonfortified potato meals (mg/per 100 mg) were 0.63 ± 0.01 and 0.31 ± 0.01, 39.34 ± 3.04 and 3.10 ± 1.72, and 7.65 ± 0.34 and 3.74 ± 0.39, respectively (P < 0.01), whereas chlorogenic acid concentrations were 15.14 ± 1.72 and 22.52 ± 3.98, respectively (P < 0.05). Geometric mean (95% CI) fractional iron absorption from the iron-biofortified clone and the nonbiofortified variety were 12.1% (10.3%-14.2%) and 16.6% (14.0%-19.6%), respectively (P < 0.001). Total iron absorption from the iron-biofortified clone and the nonbiofortified variety were 0.35 mg (0.30-0.41 mg) and 0.24 mg (0.20-0.28 mg) per 460 g meal, respectively (P < 0.001). CONCLUSIONS: TIA from iron-biofortified potato meals was 45.8% higher than that from nonbiofortified potato meals, suggesting that iron biofortification of potatoes through conventional breeding is a promising approach to improve iron intake in iron-deficient women. The study was registered at www. CLINICALTRIALS: gov as Identifier number NCT05154500.

Original publication

DOI

10.1016/j.tjnut.2023.04.010

Type

Journal article

Journal

J Nutr

Publication Date

06/2023

Volume

153

Pages

1710 - 1717

Keywords

Latin America, bioavailability, biofortified crop, iron absorption, iron-biofortified potato, stable isotopes, women, Humans, Female, Iron, Iron Isotopes, Solanum tuberosum, Peru, Food, Fortified, Sulfates, Biological Availability