Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4–14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.

Original publication




Journal article


Cell Reports

Publication Date