Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Unlike most cell types, many cancer cells survive at low extracellular pH (pHe), a chemical signature of tumors. Genes that facilitate survival under acid stress are therefore potential targets for cancer therapies. We performed a genome-wide CRISPR-Cas9 cell viability screen at physiological and acidic conditions to systematically identify gene knockouts associated with pH-related fitness defects in colorectal cancer cells. Knockouts of genes involved in oxidative phosphorylation (NDUFS1) and iron-sulfur cluster biogenesis (IBA57, NFU1) grew well at physiological pHe, but underwent profound cell death under acidic conditions. We identified several small-molecule inhibitors of mitochondrial metabolism that can kill cancer cells at low pHe only. Xenografts established from NDUFS1-/- cells grew considerably slower than their wild-type controls, but growth could be stimulated with systemic bicarbonate therapy that lessens the tumoral acid stress. These findings raise the possibility of therapeutically targeting mitochondrial metabolism in combination with acid stress as a cancer treatment option.

Original publication

DOI

10.1016/j.celrep.2022.110493

Type

Journal article

Journal

Cell Rep

Publication Date

08/03/2022

Volume

38

Keywords

CRISPR-Cas9 screen, acidosis, oxidative phosphorylation, tumor acidity, CRISPR-Cas Systems, Cell Survival, Humans, Hydrogen-Ion Concentration, Neoplasms, Oxidative Phosphorylation