An aptamer that neutralizes R5 strains of HIV-1 binds to core residues of gp120 in the CCR5 binding site.
Cohen C., Forzan M., Sproat B., Pantophlet R., McGowan I., Burton D., James W.
We have previously isolated nucleic acid ligands (aptamers) that bind the surface envelope glycoprotein, gp120, of HIV-1, and neutralize infection of diverse sub-types of virus. Our earlier studies have identified the overall structure of one of these aptamers, B40, and have indicated that it binds to gp120 in a manner that competes with that of the HIV-1 coreceptor, CCR5, and select "CD4i" antibodies with epitopes overlapping this region. Here, we sought to map the B40 binding site on gp120 more precisely by analysing its interaction with a panel of alanine substitution mutants of gp120. Furthermore, we tested our hypothesis concerning the structure of the 40 nucleotide functional core of the aptamer by the solid-phase synthesis of truncated and chemically modified derivatives. The results confirm our structural predictions and demonstrate that aptamer B40 neutralizes a diverse range of HIV-1 isolates as a result of binding to relatively conserved residues on gp120 at the heart of the CCR5-binding site. These structural insights may provide the basis for the development of potential anti-viral agents with high specificity and robustness.