Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ABSTRACTChromosome conformation capture (3C) provides an adaptable tool for studying diverse biological questions. Current 3C methods provide either low-resolution interaction profiles across the entire genome, or high-resolution interaction profiles at up to several hundred loci. All 3C methods are affected to varying degrees by inefficiency, bias and noise. As such, generation of reproducible high-resolution interaction profiles has not been achieved at scale. To overcome this barrier, we systematically tested and improved upon current methods. We show that isolation of 3C libraries from intact nuclei, as well as shortening and titration of enrichment oligonucleotides used in high-resolution methods reduces noise and increases on-target sequencing. We combined these technical modifications into a new method Nuclear-Titrated (NuTi) Capture-C, which provides a >3-fold increase in informative sequencing content over current Capture-C protocols. Using NuTi Capture-C we target 8,061 promoters in triplicate, demonstrating that this method generates reproducible high-resolution genome-wide 3C interaction profiles at scale.

Original publication




Journal article


Cold Spring Harbor Laboratory

Publication Date