Cas9-AAV6 Gene Correction of Beta-Globin in Autologous HSCs Improves Sickle Cell Disease Erythropoiesis in Mice
Wilkinson AC., Dever DP., Baik R., Camarena J., Hsu I., Charlesworth CT., Morita C., Nakauchi H., Porteus MH.
AbstractCRISPR/Cas9-mediated beta-globin (HBB) gene correction of Sickle Cell Disease (SCD) patient-derived hematopoietic stem cells (HSCs) in combination with autologous transplantation represents a novel paradigm in gene therapy. Although several Cas9-based HBB-correction approaches have been proposed, functional correction of in vivo erythropoiesis has not been investigated. Here, we used a humanized globin-cluster SCD mouse model to study Cas9-AAV6-mediated HBB-correction in functional HSCs within the context of autologous transplantation. We discover that long-term multipotent HSCs can be gene corrected ex vivo and stable hemoglobin-A production can be achieved in vivo from HBB-corrected HSCs following autologous transplantation. We observed a direct correlation between increased HBB-corrected myeloid chimerism and normalized in vivo RBC features, but even low levels of chimerism resulted in robust hemoglobin-A levels. Moreover, this study offers a platform for gene editing of mouse HSCs for both basic and translational research.