Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Infection of Escherichia coli by Shiga toxin-encoding bacteriophages (Stx phages) was the pivotal event in the evolution of the deadly Shiga toxin-encoding E. coli (STEC), of which serotype O157:H7 is the most notorious. The number of different bacterial species and strains reported to produce Shiga toxin is now more than 500, since the first reported STEC infection outbreak in 1982. Clearly, Stx phages are spreading rapidly, but the underlying mechanism for this dissemination has not been explained. Here we show that an essential and highly conserved gene product, YaeT, which has an essential role in the insertion of proteins in the gram-negative bacterial outer membrane, is the surface molecule recognized by the majority (ca. 70%) of Stx phages via conserved tail spike proteins associated with a short-tailed morphology. The yaeT gene was initially identified through complementation, and its role was confirmed in phage binding assays with and without anti-YaeT antiserum. Heterologous cloning of E. coli yaeT to enable Stx phage adsorption to Erwinia carotovora and the phage adsorption patterns of bacterial species possessing natural yaeT variants further supported this conclusion. The use of an essential and highly conserved protein by the majority of Stx phages is a strategy that has enabled and promoted the rapid spread of shigatoxigenic potential throughout multiple E. coli serogroups and related bacterial species. Infection of commensal bacteria in the mammalian gut has been shown to amplify Shiga toxin production in vivo, and the data from this study provide a platform for the development of a therapeutic strategy to limit this YaeT-mediated infection of the commensal flora.

Original publication




Journal article


J Bacteriol

Publication Date





7223 - 7233


Amino Acid Sequence, Bacterial Outer Membrane Proteins, Coliphages, Enterobacteriaceae, Escherichia coli Proteins, Models, Molecular, Molecular Sequence Data, Pectobacterium carotovorum, Protein Conformation, Receptors, Virus, Sequence Homology, Amino Acid, Shiga Toxins, Transduction, Genetic, Virus Attachment