Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The alphabet of modified DNA bases goes beyond the conventional four letters, with biological roles being found for many such modifications. Herein, we describe the observation of a modified thymine base that arises from spontaneous N1 -C2 ring opening of the oxidation product 5-formyl uracil, after N3 deprotonation. We first observed this phenomenon in silico through ab initio calculations, followed by in vitro experiments to verify its formation at a mononucleoside level and in a synthetic DNA oligonucleotide context. We show that the new base modification (Trex , thymine ring expunged) can form under physiological conditions, and is resistant to the action of common repair machineries. Furthermore, we found cases of the natural existence of Trex while screening a number of human cell types and mESC (E14), thus suggesting potential biological relevance of this modification.

Original publication

DOI

10.1002/cbic.201900484

Type

Journal article

Journal

Chembiochem

Publication Date

03/02/2020

Volume

21

Pages

320 - 323

Keywords

base modification, nucleic acids, oxidative damage, repair resistance, ring opening, thymine