Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Obstructive azoospermia (OA), defined as an obstruction in any region of the male genital tract, accounts for 40% of all azoospermia cases. Of all OA cases, ~30% are thought to have a genetic origin, however, hitherto, the underlying genetic etiology of the majority of these cases remain unknown. To address this, we took a family-based whole-exome sequencing approach to identify causal variants of OA in a multiplex family with epidydimal obstruction. A novel gain-of-function missense variant in CLDN2 (c.481G>C; p.Gly161Arg) was found to co-segregate with the phenotype, consistent with the X-linked inheritance pattern observed in the pedigree. To assess the pathogenicity of this variant, the wild and mutant protein structures were modeled and their potential for strand formation in multimeric form was assessed and compared. The results showed that dimeric and tetrameric arrangements of Claudin-2 were not only reduced, but were also significantly altered by this single residue change. We, therefore, envisage that this amino acid change likely forms a polymeric discontinuous strand, which may lead to the disruption of tight junctions among epithelial cells. This missense variant is thus likely to be responsible for the disruption of the blood-epididymis barrier, causing dislodged epithelial cells to clog the genital tract, hence causing OA. This study not only sheds light on the underlying pathobiology of OA, but also provides a basis for more efficient diagnosis in the clinical setting.

Original publication

DOI

10.1038/s10038-019-0642-0

Type

Journal article

Journal

J Hum Genet

Publication Date

10/2019

Volume

64

Pages

1023 - 1032

Keywords

Azoospermia, Claudins, Family, Humans, Male, Models, Molecular, Mutation, Missense, Pedigree, Phenotype, Whole Exome Sequencing