Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

When it comes to distinguishing a healthy cell from an infected one that needs to be destroyed, the immune system’s killer T cells sometimes make mistakes. This discovery, described today in the journal eLife, upends a long-held belief among scientists that T cells were nearly perfect at discriminating friend from foe. The results may point to new ways to treat autoimmune diseases that cause the immune system to attack the body, or lead to improvements in cutting-edge cancer treatments.

colourized 3d electron micrograph of T cell

It is widely believed that T cells can discriminate perfectly between infected cells and healthy ones based on how tightly they are able to bind to molecules called antigens on the surface of each. They bind tightly to antigens derived from viruses or bacteria, but less tightly to our own antigens on normal cells. But recent studies by scientists looking at autoimmune diseases suggest that T cells can attack otherwise normal cells if they express unusually large numbers of our own antigens, even though these bind only weakly.

 

We set out to resolve this discrepancy between the idea that T cells are near perfect at discriminating between healthy and infected cells based on the antigen binding strength, and clinical results that suggests otherwise.
- Johannes Pettmann

Co-first author Johannes Pettmann, a DPhil student based at the Sir William Dunn School of Pathology and the Davis lab at the MRC Weatherall Institute of Molecular Medicine, added “We did this by very precisely measuring the binding strength of different antigens.”

The team measured exactly how tightly receptors on T cells bind to a large number of different antigens, and then measured how T cells from healthy humans responded to cells loaded with different amounts of these antigens. “Our methods, combined with computer modelling, showed that the T cell’s receptors were better at discrimination compared to other types of receptors,” says co-first author Anna Huhn, also a DPhil student at the Sir William Dunn School of Pathology. “But they weren’t perfect – their receptors compelled T cells to respond even to antigens that showed only weak binding.”

Read the full story on the Radcliffe Department of Medicine website.

Similar stories

Spin-out company Alethiomics launches

The enterprise will focus on developing targeted therapies for a specific family of blood cancers.

Study links the onset of circulation to changes in metabolism affecting blood stem cell development

A new paper published in Cell Reports by the de Bruijn Group indicates that the onset of circulation triggers a metabolic switch associated with the maturation of haematopoietic stem cells.

Interview with Excellence Award winner Dr Susan Shapiro

A member of the Oxford Centre For Haematology, Dr Shapiro, was recently interviewed by the Royal College of Pathologists.

Mohsin Badat receives ASH-BSH Abstract Achievement Award

Dr Mohsin Badat, a Clinical Training Research Fellow from the Higgs and Davies Groups has been awarded the ASH-BSH Abstract Achievement Award by the American Society of Haematology and the British Society of Haematology.

Iron integral to the development of life on Earth – and the possibility of life on other planets

A collaboration between researchers at the MRC WIMM and Department of Earth Sciences uncovers the importance of iron for the development of complex life on Earth.

Strong cytotoxic T cell responses to an internal viral component are associated with mild COVID-19 disease

Study from the Dong Group reveals key differences in the adaptive immune responses of patients with mild vs. severe COVID-19, highlighting a potential new vaccine target.