Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent research from the Simon and Jacobsen groups reveals an unexpected role for autophagy in neutrophil development.

Neutrophils are cells of the immune system, essential for fighting bacterial and fungal infections. Within the human bone marrow, one million neutrophils are generated every second, a rapid and complex process requiring substantial energy and key to the body’s immune response to infection. However, the mechanisms that regulate this process are not fully understood, and dysfunctional neutrophil differentiation can lead to disease.

In their latest publication in Immunity, Researchers at the Simon and Jacobsen labs at the MRC WIMM (Radcliffe Department of Medicine) and Kennedy Institute (Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences) report that autophagy, an intracellular self-eating process, is necessary for successful neutrophil differentiation. Through autophagy, neutrophil precursor cells are able to degrade lipid droplets, which releases fatty acids. This allows a metabolic switch from glycolysis to free fatty acid oxidation, which the researchers have shown to be essential for neutrophil maturation. 

Many myeloid leukemias are characterised by defective differentiation and precursor cell accumulation, and autophagy defects have been reported. The next goal for the researchers is to test whether a metabolic rewiring dependent on autophagy similar to that observed in neutrophils may also take place in acute myebloastic leukemias.

 

Find out more:

Riffelmacher T., et al (2017) Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation, Immunity, 47 466-480

Similar stories

T cell Immunotherapy animation launched

A new animation explores work by the Chakraverty Group, Vyas Group, and Professor Borrow from the Jenner Institute.

New study reveals role of lymphatic system in bone healing

It was previously assumed that bones lacked lymphatic vessels, but new research from the Kusumbe Group published in Cell not only locates them within bone tissue, but demonstrates their role in bone and blood cell regeneration and reveals changes associated with aging.

Irene Roberts delivers Ham-Wasserman Lecture

Presented at the American Society of Hematology Annual Meeting, the award and lectureship recognises individuals from outside the United States who have made significant contributions to Haematology.

Anjali Kusumbe receives Women in Cell Biology Early Career Medal

Founded in 2015 to mark the 50th anniversity of the founding of the British Society for Cell Biology, the award recognises outstanding early career biologists.

Asger Jakobsen receives ASH-BSH Abstract Achievement Award

Dr Jakobsen, a Clinical Research Fellow and DPhil student from the Vyas Group has received the award from the American Society of Hematology and the British Society of Haematology.

Alexandra Preston receives ASH Outstanding Abstract Achievement Award

Alexandra Preston, a doctoral student from the Drakesmith Group, delivered a plenary talk on 11th December at the ASH Meeting and Exposition in New Orleans, Louisiana.