Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Summary Protection of peri-centromeric REC8 cohesin from separase and sister kinetochore attachment to microtubules emanating from the same spindle pole (co-orientation) ensure that sister chromatids remain associated after meiosis I. Both features are lost during meiosis II, when sister kinetochores bi-orient and lose peri-centromeric REC8 protection, resulting in sister chromatid disjunction and the production of haploid gametes. By transferring spindle-chromosome complexes (SCCs) between meiosis I and II cells, we have discovered that both sister kinetochore co-orientation and peri-centromeric cohesin protection depend on the SCC and not the cytoplasm. Moreover, the catalytic activity of separase at meiosis I is necessary not only for converting kinetochores from a co-to a bi-oriented state but also for deprotection of peri-centromeric cohesin and that cleavage of REC8 may be the key event. Crucially, we show that selective cleavage of REC8 in the vicinity of kinetochores is sufficient to destroy co-orientation in univalent chromosomes, albeit not in bivalents where resolution of chiasmata through cleavage of Rec8 along chromosome arms may also be required.

Original publication

DOI

10.1101/2020.02.06.935171

Type

Publication Date

2020