Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers at MRC HIU examined the large intestine using sophisticated single cell technology, in work that paves the way for better treatments for IBD.

None

Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with limited treatment options. The two main forms of the disease, Crohn’s disease and Ulcerative Colitis, affect more than 300,000 people in the UK. Up to 40% of patients with IBD fail to respond to conventional therapies, partly due to our limited understanding of the cells that form the large intestine, but also how they change in in patients affected by this disease. The study published today by the group of Professor Alison Simmons at the MRC Human Immunology Unit (Nuffield Department of Medicine) paves the way for better treatments for IBD by providing the first detailed single cell resolution analysis of colon cells in health and disease.

The researchers specifically examined mesenchymal cells, a group of cells that play instrumental roles in innate immunity, immune regulation and epithelial barrier maintenance in the gut. These cells are known to be important, but it is unclear whether they constitute a homogeneous population of cells, and/or how they change in a disease context. The group led by Prof Simmons examined these cells using sophisticated single cell technology, that allows assessment of the characteristics of individual cells with incredible precision.

“Using cutting edge technologies such as single cell RNA sequencing, single molecule in situ hybridisation, organoid cultures and mass cytometry time-of-flight, we were able to examine functionally diverse mesenchymal cells in the colon and track their pathogenic changes during inflammation.” Explained the authors “Colonic mesenchymal cells are a very complex cell type; precise RNA sequencing on a single cell level allowed us to segregate cells into functionally diverse categories for the first time. We then complemented this by using mass cytometry, which utilises stable metal isotopes coupled to antibodies to detect cellular targets, to dissect the most biologically significant markers associated with IBD pathology. We further used techniques such as single molecule in situ hybridisation, immunohistochemistry and sophisticated three dimensional organoid cultures to interrogate the anatomical localisation of these functionally specialised subsets of cells and demonstrate their relative contributions to health and disease.”

This work has allowed us to highlight the most significant disease-associated features that we have identified as major drivers of chronic intestinal inflammation, many of which will open up new areas of drug targets for inflammatory bowel disease - the authors

In total they examined 16,500 cells, assembling a detailed atlas of the colonic mesenchyme. Careful analysis of this atlas showed that, rather than a homogeneous group, mesenchymal cells actually fall into 5 categories, each with its unique characteristics, both in terms of gene expression, biological function and localisation. In particular they were able to show that one specific subset of these cells is dysregulated in patients with IBD, providing clues for how the disease emerges.

In addition, the researchers also compared the composition of the colon in human patients and mouse models of IBD. This work provides a detailed of understanding of the similarities and difference between the two species, essential as mice are vital models for the development and assessment of new drugs and treatments.

The authors hope that this study provides the scientific community with a comprehensive atlas of the colon in health and disease, an important reference point for the development of future therapies for IBD but also for other conditions affecting the intestine.

 

Similar stories

Anjali Kusumbe receives the RMS Life Sciences Medal

The Royal Microscopical Society awards celebrate the best in microscopy, recognising those making a special contribution to microscopy, cytometry and imaging.

Learn about cutting-edge research at Oxford Open Doors 2022

On Saturday 10th September 2022 12.30-4 pm, the MRC WIMM will be joining colleagues from the Medical Sciences Division at the Old Road Campus Research Building (ORCRB) as part of the Oxford Open Doors programme. This event is open to everyone.

Fundraising for award in memory of Dr Ling Felce

The Ling Felce award will promote cross-disciplinary excellence in bioinformatics.

Study of T-cell receptor activation leads to surprising discovery

A study from Davis Group is the first to describe the structure of the T-cell receptor when bound to an activating ligand. The findings shed light on an important trigger in the immune system, and suggest a completely new process by which cell receptors can be activated.

Biotech spinout MiroBio acquired by Gilead Sciences for ~£332m

Co-founded by Prof. Simon Davis, MiroBio focuses on developing therapeutics for inflammatory diseases.

New study shines light on the complex mechanisms of Fetal Growth Restriction in pregnancy

The paper, published in Nature Communications reveals key genes involved in the common developmental disease.