Search results
Found 10097 matches for
Molecular classification and molecular forecasting of breast cancer: ready for clinical application?
Profiling breast cancer with expression arrays has become common, and it has been suggested that the results from early studies will lead to understanding of the molecular differences between clinical cases and allow individualization of care. We critically review two main applications of expression profiling; studies unraveling novel breast cancer classifications and those that aim to identify novel markers for prediction of clinical outcome. Breast cancer may now be subclassified into luminal, basal, and HER2 subtypes with distinct differences in prognosis and response to therapy. However, profiling studies to identify predictive markers have suffered from methodologic problems that prevent general application of their results. Future work will need to reanalyze existing microarray data sets to identify more representative sets of candidate genes for use as prognostic signatures and will need to take into account the new knowledge of molecular subtypes of breast cancer when assessing predictive effects.
SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer.
Regulators of mitosis have been successfully targeted to enhance response to taxane chemotherapy. Here, we show that the salt inducible kinase 2 (SIK2) localizes at the centrosome, plays a key role in the initiation of mitosis, and regulates the localization of the centrosome linker protein, C-Nap1, through S2392 phosphorylation. Interference with the known SIK2 inhibitor PKA induced SIK2-dependent centrosome splitting in interphase while SIK2 depletion blocked centrosome separation in mitosis, sensitizing ovarian cancers to paclitaxel in culture and in xenografts. Depletion of SIK2 also delayed G1/S transition and reduced AKT phosphorylation. Higher expression of SIK2 significantly correlated with poor survival in patients with high-grade serous ovarian cancers. We believe these data identify SIK2 as a plausible target for therapy in ovarian cancers.
Absence of p300 induces cellular phenotypic changes characteristic of epithelial to mesenchyme transition.
p300 is a transcriptional cofactor and prototype histone acetyltransferase involved in regulating multiple cellular processes. We generated p300 deficient (p300-) cells from the colon carcinoma cell line HCT116 by gene targeting. Comparison of epithelial and mesenchymal proteins in p300- with parental HCT116 cells showed that a number of genes involved in cell and extracellular matrix interactions, typical of 'epithelial to mesenchyme transition' were differentially regulated at both the RNA and protein level. p300- cells were found to have aggressive 'cancer' phenotypes, with loss of cell-cell adhesion, defects in cell-matrix adhesion and increased migration through collagen and matrigel. Although migration was shown to be metalloproteinase mediated, these cells actually showed a downregulation or no change in the level of key metalloproteinases, indicating that changes in cellular adhesion properties can be critical for cellular mobility.
The tumor-suppressor gene ARHI (DIRAS3) suppresses ovarian cancer cell migration through inhibition of the Stat3 and FAK/Rho signaling pathways.
Ovarian cancers migrate and metastasize over the surface of the peritoneal cavity. Consequently, dysregulation of mechanisms that limit cell migration may be particularly important in the pathogenesis of the disease. ARHI is an imprinted tumor-suppressor gene that is downregulated in >60% of ovarian cancers, and its loss is associated with decreased progression-free survival. ARHI encodes a 26-kDa GTPase with homology to Ras. In contrast to Ras, ARHI inhibits cell growth, but whether it also regulates cell motility has not been studied previously. Here we report that re-expression of ARHI decreases the motility of IL-6- and epidermal growth factor (EGF)-stimulated SKOv3 and Hey ovarian cancer cells, inhibiting both chemotaxis and haptotaxis. ARHI binds to and sequesters Stat3 in the cytoplasm, preventing its translocation to the nucleus and localization in focal adhesion complexes. Stat3 siRNA or the JAK2 inhibitor AG490 produced similar inhibition of motility. However, the combination of ARHI expression with Stat3 knockdown or inhibition produced greatest inhibition in ovarian cancer cell migration, consistent with Stat3-dependent and Stat3-independent mechanisms. Consistent with two distinct signaling pathways, knockdown of Stat3 selectively inhibited IL-6-stimulated migration, whereas knockdown of focal adhesion kinase (FAK) preferentially inhibited EGF-stimulated migration. In EGF-stimulated ovarian cancer cells, re-expression of ARHI inhibited FAK(Y397) and Src(Y416) phosphorylation, disrupted focal adhesions, and blocked FAK-mediated RhoA signaling, resulting in decreased levels of GTP-RhoA. Re-expression of ARHI also disrupted the formation of actin stress fibers in a FAK- and RhoA-dependent manner. Thus, ARHI has a critical and previously uncharacterized role in the regulation of ovarian cancer cell migration, exerting inhibitory effects on two distinct signaling pathways.
Tuning microtubule dynamics to enhance cancer therapy by modulating FER-mediated CRMP2 phosphorylation.
Though used widely in cancer therapy, paclitaxel only elicits a response in a fraction of patients. A strong determinant of paclitaxel tumor response is the state of microtubule dynamic instability. However, whether the manipulation of this physiological process can be controlled to enhance paclitaxel response has not been tested. Here, we show a previously unrecognized role of the microtubule-associated protein CRMP2 in inducing microtubule bundling through its carboxy terminus. This activity is significantly decreased when the FER tyrosine kinase phosphorylates CRMP2 at Y479 and Y499. The crystal structures of wild-type CRMP2 and CRMP2-Y479E reveal how mimicking phosphorylation prevents tetramerization of CRMP2. Depletion of FER or reducing its catalytic activity using sub-therapeutic doses of inhibitors increases paclitaxel-induced microtubule stability and cytotoxicity in ovarian cancer cells and in vivo. This work provides a rationale for inhibiting FER-mediated CRMP2 phosphorylation to enhance paclitaxel on-target activity for cancer therapy.
Decitabine and suberoylanilide hydroxamic acid (SAHA) inhibit growth of ovarian cancer cell lines and xenografts while inducing expression of imprinted tumor suppressor genes, apoptosis, G2/M arrest, and autophagy.
BACKGROUND: Epigenetic therapy has had a significant impact on the management of hematologic malignancies, but its role in the treatment of ovarian cancer remains to be defined. The authors previously demonstrated that treatment of ovarian and breast cancer cells with DNA methyltransferase and histone deacetylase (HDAC) inhibitors can up-regulate the expression of imprinted tumor suppressors. In this study, demethylating agents and HDAC inhibitors were tested for their ability to induce re-expression of tumor suppressor genes, inhibiting growth of ovarian cancer cells in culture and in xenografts. METHODS: Ovarian cancer cells (Hey and SKOv3) were treated with demethylating agents (5-aza-20-deoxycytidine [DAC] or 5-azacitidine [AZA]) or with HDAC inhibitors (suberoylanilide hydroxamicacid [SAHA] or trichostatin A [TSA]) to determine their impact on cellular proliferation, cell cycle regulation, apoptosis, autophagy, and re-expression of 2 growth inhibitory imprinted tumor suppressor genes: guanosine triphosphate-binding Di-RAS-like 3 (ARHI) and paternally expressed 3 (PEG3). The in vivo activities of DAC and SAHA were assessed in a Hey xenograft model. RESULTS: The combination of DAC and SAHA produced synergistic inhibition of Hey and SKOv3 cell growth by apoptosis and cell cycle arrest. DAC induced autophagy in Hey cells that was enhanced by SAHA. Treatment with both agents induced re-expression of ARHI and PEG3 in cultured cells and in xenografts, correlating with growth inhibition. Knockdown of ARHI decreased DAC-induced autophagy. DAC and SAHA inhibited the growth of Hey xenografts and induced autophagy in vivo. CONCLUSIONS: A combination of DAC and SAHA inhibited ovarian cancer growth while inducing apoptosis, G2/M arrest, autophagy, and re-expression of imprinted tumor suppressor genes.
Modulating microtubule stability enhances the cytotoxic response of cancer cells to Paclitaxel.
The extracellular matrix protein TGFBI enhances the cytotoxic response of cancer cells to paclitaxel by affecting integrin signals that stabilize microtubules. Extending the implications of this knowledge, we tested the more general hypothesis that cancer cell signals which increase microtubule stability before exposure to paclitaxel may increase its ability to stabilize microtubules and thereby enhance its cytotoxicity. Toward this end, we carried out an siRNA screen to evaluate how genetic depletion affected microtubule stabilization, cell viability, and apoptosis. High content microscopic analysis was carried out in the absence or presence of paclitaxel. Kinase knockdowns that stabilized microtubules strongly enhanced the effects of paclitaxel treatment. Conversely, kinase knockdowns that enhanced paclitaxel-mediated cytotoxicity sensitized cells to microtubule stabilization by paclitaxel. The siRNA screen identified several genes that have not been linked previously to microtubule regulation or paclitaxel response. Gene shaving and Bayesian resampling used to classify these genes suggested three pathways of paclitaxel-induced cell death related to apoptosis and microtubule stability, apoptosis alone, or neither process. Our results offer a functional classification of the genetic basis for paclitaxel sensitivity and they support the hypothesis that stabilizing microtubules prior to therapy could enhance antitumor responses to paclitaxel treatment.
The structural basis of PI3K cancer mutations: from mechanism to therapy.
While genetic alteration in the p85α-p110α (PI3K) complex represents one of the most frequent driver mutations in cancer, the wild-type complex is also required for driving cancer progression through mutations in related pathways. Understanding the mechanistic basis of the function of the phosphoinositide 3-kinase (PI3K) is essential for designing optimal therapeutic targeting strategies. Recent structural data of the p85α/p110α complex unraveled key insights into the molecular mechanisms of the activation of the complex and provided plausible explanations for the well-established biochemical data on p85/p110 dimer regulation. A wealth of biochemical and biologic information supported by recent genetic findings provides a strong basis for additional p110-independent function of p85α in the regulation of cell survival. In this article, we review the structural, biochemical, and biologic mechanisms through which p85α regulates the cancer cell life cycle with an emphasis on the recently discovered genetic alterations in cancer. As cancer progression is dependent on multiple biologic processes, targeting key drivers such as the PI3K may be required for efficacious therapy of heterogeneous tumors typically present in patients with late-stage disease.
A novel multiwavelength fluorescence image-guided surgery imaging system
We describe the development and performance analysis of two clinical near-infrared fluorescence image-guided surgery (FIGS) devices that aim to overcome some of the limitations of current FIGS systems. The devices operate in a widefield-imaging mode and can work (1) in conjunction with a laparoscope, during minimally invasive surgery, and (2) as a hand-held, open surgery imaging system. In both cases, narrow-band excitation light, delivered at multiple wavelengths, is efficiently combined with white reflectance light. Light is delivered to ~100 cm2 surgical field at 1-2 mW/cm2 for white light and 3-7 mW/cm2 (depending on wavelength) of red - near infrared excitation, at a typical working distance of 350 mm for the hand-held device and 100 mm for the laparoscope. A single, sensitive, miniaturized color camera collects both fluorescence and white reflectance light. The use of a single imager eliminates image alignment and software overlay complexity. A novel filtering and illumination arrangement allows simultaneous detection of white reflectance and fluorescence emission from multiple dyes in real-time. We will present both fluorescence detection sensitivity modeling and practical performance data. We have demonstrated the efficiency and the advantages of the devices both pre-clinically and during live surgery on humans. Both the hand-held and the laparoscopic systems have proved to be reliable and beneficial in an ongoing clinical trial involving sentinel lymph node detection in gynecological cancers. We will show preliminary results using two clinically approved dyes, Methylene blue and indocyanine green. We anticipate that this technology can be integrated and routinely used in a larger variety of surgical procedures.
Targeting therapies in cancer: Opportunities in ovarian cancer
© 2011 The Royal College of Obstetricians and Gynaecologists. In 2008, 225000 women worldwide were diagnosed with ovarian cancer and an estimated 140000 died of the disease. This makes ovarian cancer the most lethal gynaecological malignancy. In spite of the increased overall 5 year survival, the mortality rate from the disease has shown either a slight decrease or even an increase in certain age groups. For example, in the UK, the 5 year survival increased from 21% in 1971—75 to 38.9% in 2001—06 but the mean mortality rate only decreased by 10% over the same period (from 12.02 per 100000 to 10.77 per 100000, respectively), with a paradoxical increase in mean mortality rate in the over-65 age group over the same period of 37% (from 40.8 per 100000 to 55.8 per 100000, respectively). A similar trend has been observed in the USA, where the 5 year survival increased from 37% in 1975—77 to 45% in 1999—2006 (0.05). However, the mean mortality rate only decreased by 11.4% over the same time period (from 9.8 per 100000 to 8.8 per 100000, respectively). Similarly, the mean mortality rate in the over-65 age group increased by 15.7% (from 38.4 per 100000 to 44.5 per 100000, respectively). Improved progression-free survival (PFS) and overall survival (OS) in developed countries possibly relates to the more consistent use of cytoreductive surgery and to the development of combination chemotherapy for primary and recurrent disease.
Critical questions in ovarian cancer research and treatment: Report of an American Association for Cancer Research Special Conference.
Substantial progress has been made in understanding ovarian cancer at the molecular and cellular level. Significant improvement in 5-year survival has been achieved through cytoreductive surgery, combination platinum-based chemotherapy, and more effective treatment of recurrent cancer, and there are now more than 280,000 ovarian cancer survivors in the United States. Despite these advances, long-term survival in late-stage disease has improved little over the last 4 decades. Poor outcomes relate, in part, to late stage at initial diagnosis, intrinsic drug resistance, and the persistence of dormant drug-resistant cancer cells after primary surgery and chemotherapy. Our ability to accelerate progress in the clinic will depend on the ability to answer several critical questions regarding this disease. To assess current answers, an American Association for Cancer Research Special Conference on "Critical Questions in Ovarian Cancer Research and Treatment" was held in Pittsburgh, Pennsylvania, on October 1-3, 2017. Although clinical, translational, and basic investigators conducted much of the discussion, advocates participated in the meeting, and many presentations were directly relevant to patient care, including treatment with poly adenosine diphosphate ribose polymerase (PARP) inhibitors, attempts to improve immunotherapy by overcoming the immune suppressive effects of the microenvironment, and a better understanding of the heterogeneity of the disease.
Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo.
CRISPR/Cas9 genome engineering has revolutionised all aspects of biological research, with epigenome engineering transforming gene regulation studies. Here, we present an optimised, adaptable toolkit enabling genome and epigenome engineering in the chicken embryo, and demonstrate its utility by probing gene regulatory interactions mediated by neural crest enhancers. First, we optimise novel efficient guide-RNA mini expression vectors utilising chick U6 promoters, provide a strategy for rapid somatic gene knockout and establish a protocol for evaluation of mutational penetrance by targeted next-generation sequencing. We show that CRISPR/Cas9-mediated disruption of transcription factors causes a reduction in their cognate enhancer-driven reporter activity. Next, we assess endogenous enhancer function using both enhancer deletion and nuclease-deficient Cas9 (dCas9) effector fusions to modulate enhancer chromatin landscape, thus providing the first report of epigenome engineering in a developing embryo. Finally, we use the synergistic activation mediator (SAM) system to activate an endogenous target promoter. The novel genome and epigenome engineering toolkit developed here enables manipulation of endogenous gene expression and enhancer activity in chicken embryos, facilitating high-resolution analysis of gene regulatory interactions in vivo.
Premalignant SOX2 overexpression in the fallopian tubes of ovarian cancer patients: Discovery and validation studies.
Current screening methods for ovarian cancer can only detect advanced disease. Earlier detection has proved difficult because the molecular precursors involved in the natural history of the disease are unknown. To identify early driver mutations in ovarian cancer cells, we used dense whole genome sequencing of micrometastases and microscopic residual disease collected at three time points over three years from a single patient during treatment for high-grade serous ovarian cancer (HGSOC). The functional and clinical significance of the identified mutations was examined using a combination of population-based whole genome sequencing, targeted deep sequencing, multi-center analysis of protein expression, loss of function experiments in an in-vivo reporter assay and mammalian models, and gain of function experiments in primary cultured fallopian tube epithelial (FTE) cells. We identified frequent mutations involving a 40kb distal repressor region for the key stem cell differentiation gene SOX2. In the apparently normal FTE, the region was also mutated. This was associated with a profound increase in SOX2 expression (p<2(-16)), which was not found in patients without cancer (n=108). Importantly, we show that SOX2 overexpression in FTE is nearly ubiquitous in patients with HGSOCs (n=100), and common in BRCA1-BRCA2 mutation carriers (n=71) who underwent prophylactic salpingo-oophorectomy. We propose that the finding of SOX2 overexpression in FTE could be exploited to develop biomarkers for detecting disease at a premalignant stage, which would reduce mortality from this devastating disease.
Engineering Synthetic Signaling Pathways with Programmable dCas9-Based Chimeric Receptors.
Synthetic receptors provide a powerful experimental tool for generation of designer cells capable of monitoring the environment, sensing specific input signals, and executing diverse custom response programs. To advance the promise of cellular engineering, we have developed a class of chimeric receptors that integrate a highly programmable and portable nuclease-deficient CRISPR/Cas9 (dCas9) signal transduction module. We demonstrate that the core dCas9 synthetic receptor (dCas9-synR) architecture can be readily adapted to various classes of native ectodomain scaffolds, linking their natural inputs with orthogonal output functions. Importantly, these receptors achieved stringent OFF/ON state transition characteristics, showed agonist-mediated dose-dependent activation, and could be programmed to couple specific disease markers with diverse, therapeutically relevant multi-gene expression circuits. The modular dCas9-synR platform developed here provides a generalizable blueprint for designing next generations of synthetic receptors, which will enable the implementation of highly complex combinatorial functions in cellular engineering.
Optimizing hepcidin measurement with a proficiency test framework and standardization improvement.
Objectives Hepcidin measurement advances insights in pathophysiology, diagnosis, and treatment of iron disorders, but requires analytically sound and standardized measurement procedures (MPs). Recent development of a two-level secondary reference material (sRM) for hepcidin assays allows worldwide standardization. However, no proficiency testing (PT) schemes to ensure external quality assurance (EQA) exist and the absence of a high calibrator in the sRM set precludes optimal standardization. Methods We developed a pilot PT together with the Dutch EQA organization Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek (SKML) that included 16 international hepcidin MPs. The design included 12 human serum samples that allowed us to evaluate accuracy, linearity, precision and standardization potential. We manufactured, value-assigned, and validated a high-level calibrator in a similar manner to the existing low- and middle-level sRM. Results The pilot PT confirmed logistical feasibility of an annual scheme. Most MPs demonstrated linearity (R2>0.99) and precision (duplicate CV>12.2%), although the need for EQA was shown by large variability in accuracy. The high-level calibrator proved effective, reducing the inter-assay CV from 42.0% (unstandardized) to 14.0%, compared to 17.6% with the two-leveled set. The calibrator passed international homogeneity criteria and was assigned a value of 9.07 ± 0.24 nmol/L. Conclusions We established a framework for future PT to enable laboratory accreditation, which is essential to ensure quality of hepcidin measurement and its use in patient care. Additionally, we showed optimized standardization is possible by extending the current sRM with a third high calibrator, although international implementation of the sRM is a prerequisite for its success.
Feeding, Communication, Hydrocephalus, and Intracranial Hypertension in Patients With Severe FGFR2-Associated Pfeiffer Syndrome.
BACKGROUND: Pfeiffer syndrome is associated with a genetic mutation of the FGFR2 (or more rarely, FGFR1) gene, and features the combination of craniosynostosis, midface hypoplasia, broad thumbs and broad great toes. Previous research has identified a wide spectrum of clinical phenotypes in patients with Pfeiffer syndrome. This study aimed to investigate the multifactorial considerations for speech, language, hearing and feeding development in patients with severe genetically-confirmed Pfeiffer syndrome. METHODS: A 23-year retrospective case-note review of patients attending the Oxford Craniofacial Unit was undertaken. Patients were categorized according to genotype. Patients with mutations located in FGFR1, or outside the FGFR2 IgIII domain-hotspot, or representing known Crouzon/Pfeiffer overlap substitutions were excluded. Twelve patients with severe FGFR2-associated Pfeiffer syndrome were identified. RESULTS: Patients most commonly had pansynostosis (n = 8) followed by bicoronal (n = 3), and bicoronal and sagittal synostosis (n = 1). Seven patients had a Chiari I malformation. Four patients had a diagnosis of epilepsy. Ten patients had with hydrocephalus necessitating ventriculoperitoneal shunt insertion.Feeding difficulties were common (n = 10/12) and multifactorial. In 5/12 cases, they were associated with pansynostosis, hydrocephalus, tracheostomy and tube feeding in infancy.Hearing data were available for 10 patients, of whom 9 had conductive hearing loss, and 8 required hearing aids. Results indicated that 3/4 patients had expressive language difficulties, 3/4 had appropriate receptive language skills. 6/12 patients had a speech sound disorder and abnormal resonance. CONCLUSION: This study has identified important speech, language, hearing and feeding issues in patients with severe FGFR2-associated Pfeiffer syndrome. Results indicate that a high rate of motor-based oral stage feeding difficulties, and pharyngeal stage swallowing difficulties necessitating regular review by specialist craniofacial speech and language therapists.
Evidence for 28 genetic disorders discovered by combining healthcare and research data
© 2020, The Author(s), under exclusive licence to Springer Nature Limited. De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent–offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.