Search results
Found 10083 matches for
A Revised Prognostic Model for Patients with Acute Myeloid Leukemia and First Relapse.
Most patients with acute myeloid leukemia (AML) may obtain remission upon induction chemotherapy, but relapse is frequent and associated with poor survival. Previous prognostic models for outcomes after relapse lacked analysis of comprehensive molecular data. A validated prognostic model integrating clinical, cytogenetic, and molecular variables may support treatment decisions. We studied 943 AML patients who relapsed after first-line intensive induction treatment in a development cohort (HOVON-SAKK). A random survival forest algorithm was used to evaluate the association of clinical parameters, cytogenetic abnormalities, and molecular variables at diagnosis with overall survival (OS). Relapsing patients (n=377) who were enrolled in the NCRI-AML18 trial were used for model validation. In the development cohort, the median age at relapse was 58 years, and patients were classified as 2022 ELN favorable (22%), intermediate (31%), and adverse (48%) risk. One-third underwent allogeneic transplantation in first complete remission. Variable selection yielded nine variables significantly associated with 1-year OS, including relapse-free interval, age, white blood cell count, mutated TP53, FLT3-ITD, core-binding factor abnormalities, t(v;11q23)/KMT2A-rearranged and complex/monosomal karyotype, which were assigned points according to their estimated hazard ratios. Three prognostic groups were defined with distinct 1-year OS in both development (favorable: 51±3%, intermediate: 29±3% and poor: 14±2%, respectively) and validation cohorts (51±4%, 26±5% and 14±3%, respectively). Independent validation confirmed the improved accuracy in predicting outcomes for AML patients in first relapse. The revised AML relapse model improved on previous classification systems for prognostication of outcomes after first AML relapse. It provides stratification which might support tailoring second line treatment.
Protocol for high-quality RNA sequencing, cell surface protein analysis, and genotyping in single cells using TARGET-seq.
Studying the consequences of somatic mutations in pre-malignant and cancerous tissues is challenging due to noise in single-cell transcriptome data and difficulty in identifying the clonal identity of single cells. We optimized TARGET-seq to develop TARGET-seq+, which combines RNA sequencing (RNA-seq), the analysis of cell surface protein expression, and genotyping in single cells with improved sensitivity. We describe the steps for cell isolation, the preparation of single-cell RNA-seq (scRNA-seq) and genotyping libraries, and sequencing. We also provide guidance on the analysis of single-cell genotyping, transcriptome pre-processing, and data integration. For complete details on the use and execution of this protocol, please refer to Jakobsen et al.1.
Clonal tracing with somatic epimutations reveals dynamics of blood ageing.
Current approaches used to track stem cell clones through differentiation require genetic engineering1,2 or rely on sparse somatic DNA variants3,4, which limits their wide application. Here we discover that DNA methylation of a subset of CpG sites reflects cellular differentiation, whereas another subset undergoes stochastic epimutations and can serve as digital barcodes of clonal identity. We demonstrate that targeted single-cell profiling of DNA methylation5 at single-CpG resolution can accurately extract both layers of information. To that end, we develop EPI-Clone, a method for transgene-free lineage tracing at scale. Applied to mouse and human haematopoiesis, we capture hundreds of clonal differentiation trajectories across tens of individuals and 230,358 single cells. In mouse ageing, we demonstrate that myeloid bias and low output of old haematopoietic stem cells6 are restricted to a small number of expanded clones, whereas many functionally young-like clones persist in old age. In human ageing, clones with and without known driver mutations of clonal haematopoieis7 are part of a spectrum of age-related clonal expansions that display similar lineage biases. EPI-Clone enables accurate and transgene-free single-cell lineage tracing on hematopoietic cell state landscapes at scale.
Data from A phase Ib/II study of ivosidenib with venetoclax +/- azacitidine in IDH1-mutated myeloid malignancies
<div>Abstract<p>The safety and efficacy of combining the IDH1 inhibitor ivosidenib (IVO) with the BCL2 inhibitor venetoclax (VEN; IVO+VEN) +/- azacitidine (AZA; IVO+VEN+AZA) was evaluated in four cohorts of patients with IDH1-mutated myeloid malignancies (n=31). Most (91%) adverse events were grade 1 or 2. The maximal tolerated dose was not reached. Composite complete remission with IVO+VEN+AZA vs. IVO+VEN was 90% vs. 83%. Among MRD-evaluable patients (N=16) 63% attained MRD-negative remissions; IDH1 mutation clearance occurred in 64% of patients receiving ≥5 treatment cycles (N=14). Median EFS and OS were 36 (95% CI: 23-NR) and 42 (95% CI: 42-NR) months. Patients with signaling gene mutations appeared to particularly benefit from the triplet regimen. Longitudinal single-cell proteogenomic analyses linked co-occurring mutations, anti-apoptotic protein expression, and cell maturation to therapeutic sensitivity of IDH1-mutated clones. No IDH isoform switching or second-site IDH1 mutations were observed, indicating combination therapy may overcome established resistance pathways to single-agent IVO.</p></div>
Pleural fluid proteomics from patients with pleural infection shows signatures of diverse neutrophilic responses: The Oxford Pleural Infection Endotyping Study (TORPIDS-2).
BACKGROUND: Pleural infection is a complex disease with poor clinical outcomes and increasing incidence worldwide, yet its biological endotypes remain unknown. METHODS: We analysed 80 pleural fluid samples from the PILOT study, a prospective study on pleural infection, using unlabelled mass spectrometry. A total of 449 proteins were retained after filtering. Unsupervised hierarchical clustering and UMAP analyses were used to cluster samples and pathway analysis was performed to identify the biological processes. Protein signatures as identified by the pathway analysis were compared to microbiology as defined by 16S rRNA next generation sequencing. Spearman and exact Fischer's methods were used for correlation assessment. RESULTS: Higher neutrophil degranulation was correlated with increased glycolysis (OR=281, p<2.2E-16) and pentose phosphate activation (OR=371.45, p<2.2E-16). Samples dominated by Streptococcus pneumoniae exhibited higher neutrophil degranulation (OR=12.08, p=0.005), glycolysis (OR=11.4, p=0.006), and pentose phosphate activity (OR=12.82, p=0.004). On the other hand, samples dominated by anaerobes and Gram-negative bacteria exhibited lower neutrophil degranulation (OR=0.15, p=0.01, glycolysis (OR=0.14, p=0.01), and pentose phosphate activity (OR=0.07, p=0.001). Increased activity of the liver and retinoid X receptors (LXR-RXR) pathway was associated with lower risk of one-year mortality (OR=0.24, p=0.04). CONCLUSIONS: These findings suggest that pleural infection patients exhibit diverse responses of neutrophil mediated immunity, glycolysis, and pentose phosphate activation which are associated with microbiology. Therapeutic targeting of the LXR-RXR pathway with agonists is a possible treatment approach.
Long term health outcomes in people with diabetes 12 months after hospitalisation with COVID-19 in the UK: a prospective cohort study.
BACKGROUND: People with diabetes are at increased risk of hospitalisation, morbidity, and mortality following SARS-CoV-2 infection. Long-term outcomes for people with diabetes previously hospitalised with COVID-19 are, however, unknown. This study aimed to determine the longer-term physical and mental health effects of COVID-19 in people with and without diabetes. METHODS: The PHOSP-COVID study is a multicentre, long-term follow-up study of adults discharged from hospital between 1 February 2020 and 31 March 2021 in the UK following COVID-19, involving detailed assessment at 5 and 12 months after discharge. The association between diabetes status and outcomes were explored using multivariable linear and logistic regressions. FINDINGS: People with diabetes who survived hospital admission with COVID-19 display worse physical outcomes compared to those without diabetes at 5- and 12-month follow-up. People with diabetes displayed higher fatigue (only at 5 months), frailty, lower physical performance, and health-related quality of life and poorer cognitive function. Differences in outcomes between diabetes status groups were largely consistent from 5 to 12-months. In regression models, differences at 5 and 12 months were attenuated after adjustment for BMI and presence of other long-term conditions. INTERPRETATION: People with diabetes reported worse physical outcomes up to 12 months after hospital discharge with COVID-19 compared to those without diabetes. These data support the need to reduce inequalities in long-term physical and mental health effects of SARS-CoV-2 infection in people with diabetes. FUNDING: UK Research and Innovation and National Institute for Health Research. The study was approved by the Leeds West Research Ethics Committee (20/YH/0225) and is registered on the ISRCTN Registry (ISRCTN10980107).
Advancing atmospheric solids analysis probe mass spectrometry applications: a multifaceted approach to optimising clinical data set generation.
The use of rapid mass spectrometry techniques, such as atmospheric-solids-analysis-probe mass spectrometry (ASAP-MS), in the analysis of metabolite patterns in clinical samples holds significant promise for developing new diagnostic tools and enabling rapid disease screening. The rapid measurement times, ease of use, and relatively low cost of ASAP-MS makes it an appealing option for use in clinical settings. However, despite the potential of such approaches, a number of important experimental considerations are often overlooked. As well as instrument-specific choices and settings, these include the treatment of background noise and/or contaminant peaks in the mass spectra, and the influence of consumables, different users, and batch effects more generally. The present study assesses the impact of these various factors on measurement accuracy and reproducibility, using human brain and cerebrospinal fluid samples as examples. Based on our results, we make a series of recommendations relating to optimisation of measurement and cleaning protocols, consumable selection, and batch effect detection and correction, in order to optimise the reliability and reproducibility of ASAP-MS measurements in clinical settings.
Immune-epithelial-stromal networks define the cellular ecosystem of the small intestine in celiac disease.
The immune-epithelial-stromal interactions underpinning intestinal damage in celiac disease (CD) are incompletely understood. To address this, we performed single-cell transcriptomics (RNA sequencing; 86,442 immune, parenchymal and epithelial cells; 35 participants) and spatial transcriptomics (20 participants) on CD intestinal biopsy samples. Here we show that in CD, epithelial populations shifted toward a progenitor state, with interferon-driven transcriptional responses, and perturbation of secretory and enteroendocrine populations. Mucosal T cells showed numeric and functional changes in regulatory and follicular helper-like CD4+ T cells, intraepithelial lymphocytes, CD8+ and γδ T cell subsets, with skewed T cell antigen receptor repertoires. Mucosal changes remained detectable despite treatment, representing a persistent immune-epithelial 'scar'. Spatial transcriptomics defined transcriptional niches beyond those captured in conventional histological scores, including CD-specific lymphoid aggregates containing T cell-B cell interactions. Receptor-ligand spatial analyses integrated with disease susceptibility gene expression defined networks of altered chemokine and morphogen signaling, and provide potential therapeutic targets for CD prevention and treatment.
Resistance to immunomodulatory drugs in multiple myeloma: the cereblon pathway and beyond
Acquired resistance to immunomodulatory drugs (IMiD) remains a significant unmet need in the treatment landscape of multiple myeloma (MM). The cereblon (CRBN) pathway-dependent mechanisms are known to be vital contributors to IMiD resistance; however, they may account for only a small proportion. Recent research has unveiled additional mechanisms of acquired IMiD resistance that are independent of the CRBN pathway. In this review, we provide a comprehensive overview of the existing work on IMiD resistance in MM, focusing specifically on the emerging evidence of CRBN pathway-independent mechanisms. Finally, we discuss the plausible actionable strategies and outlook for IMiD-based therapies moving forward.
T cell memory response to MPXV infection exhibits greater effector function and migratory potential compared to MVA-BN vaccination.
In 2022, a global mpox outbreak occurred, and remains a concern today. The T cell memory response to MPXV (monkeypox virus) infection has not been fully investigated. In this study, we evaluate this response in convalescent and MVA-BN (Modified Vaccinia Ankara - Bavarian Nordic) vaccinated individuals using VACV-infected cells. Strong CD8+ and CD4+ T cell responses are observed, and T cell responses are biased towards viral early expressed proteins. We identify seven immunodominant HLA-A*02:01 restricted MPXV-specific epitopes and focus our detailed phenotypic and scRNAseq analysis on the immunodominant HLA-A*02:01-G5R18-26-specific CD8+ T cell response. While tetramer+CD8+ T cells share similar differentiation and activation phenotypes, T cells from convalescent individuals show greater cytotoxicity, migratory potential to site of infection and TCR clonal expansion. Our data suggest that effective functional profiles of MPXV-specific memory T cells induced by Mpox infection may have an implication on the long-term protective responses to future infection.
Antibody agonists trigger immune receptor signaling through local exclusion of receptor-type protein tyrosine phosphatases.
Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.
Transcriptional reprogramming via signaling domains of CD2, CD28, and 4-1BB.
Costimulatory signals provided to T cells during antigen encounter have a decisive role in the outcome of immune responses. Here, we used chimeric receptors harboring the extracellular domain of mouse inducible T cell costimulator (mICOS) to study transcriptional activation mediated by cytoplasmic sequences of the major T cell costimulatory receptors CD28, 4-1BB, and CD2. The chimeric receptors were introduced in a T cell reporter platform that allows to simultaneously evaluate nuclear factor κB (NF-κB), NFAT, and AP-1 activation. Engagement of the chimeric receptors induced distinct transcriptional profiles. CD28 signaling activated all three transcription factors, whereas 4-1BB strongly promoted NF-κB and AP-1 but downregulated NFAT activity. CD2 signals resulted in the strongest upregulation of NFAT. Transcriptome analysis revealed pronounced and distinct gene expression signatures upon CD2 and 4-1BB signaling. Using the intracellular sequence of CD28, we exemplify that distinct signaling motifs endow chimeric receptors with different costimulatory capacities.
Highlights from the 1st European cancer dependency map symposium and workshop.
The systematic identification of tumour vulnerabilities through perturbational experiments on cancer models, including genome editing and drug screens, is playing a crucial role in combating cancer. This collective effort is known as the Cancer Dependency Map (DepMap). The 1st European Cancer Dependency Map Symposium (EuroDepMap), held in Milan last May, featured talks, a roundtable discussion, and a poster session, showcasing the latest discoveries and future challenges related to the DepMap. The symposium aimed to facilitate interactions among participants across Europe, encourage idea exchange with leading experts, and present their work and future projects. Importantly, it sparked discussions on future endeavours, such as screening more complex cancer models and accounting for tumour evolution.
Structure of a fully assembled γδ T cell antigen receptor.
T cells in jawed vertebrates comprise two lineages, αβ T cells and γδ T cells, defined by the antigen receptors they express-that is, αβ and γδ T cell receptors (TCRs), respectively. The two lineages have different immunological roles, requiring that γδ TCRs recognize more structurally diverse ligands1. Nevertheless, the receptors use shared CD3 subunits to initiate signalling. Whereas the structural organization of αβ TCRs is understood2,3, the architecture of γδ TCRs is unknown. Here, we used cryogenic electron microscopy to determine the structure of a fully assembled, MR1-reactive, human Vγ8Vδ3 TCR-CD3δγε2ζ2 complex bound by anti-CD3ε antibody Fab fragments4,5. The arrangement of CD3 subunits in γδ and αβ TCRs is conserved and, although the transmembrane α-helices of the TCR-γδ and -αβ subunits differ markedly in sequence, packing of the eight transmembrane-helix bundles is similar. However, in contrast to the apparently rigid αβ TCR2,3,6, the γδ TCR exhibits considerable conformational heterogeneity owing to the ligand-binding TCR-γδ subunits being tethered to the CD3 subunits by their transmembrane regions only. Reducing this conformational heterogeneity by transfer of the Vγ8Vδ3 TCR variable domains to an αβ TCR enhanced receptor signalling, suggesting that γδ TCR organization reflects a compromise between efficient signalling and the ability to engage structurally diverse ligands. Our findings reveal the marked structural plasticity of the TCR on evolutionary timescales, and recast it as a highly versatile receptor capable of initiating signalling as either a rigid or flexible structure.