Search results
Found 10486 matches for
Distinct epicardial gene regulatory programs drive development and regeneration of the zebrafish heart.
Unlike the adult mammalian heart, which has limited regenerative capacity, the zebrafish heart fully regenerates following injury. Reactivation of cardiac developmental programs is considered key to successfully regenerating the heart, yet the regulation underlying the response to injury remains elusive. Here, we compared the transcriptome and epigenome of the developing and regenerating zebrafish epicardia. We identified epicardial enhancer elements with specific activity during development or during adult heart regeneration. By generating gene regulatory networks associated with epicardial development and regeneration, we inferred genetic programs driving each of these processes, which were largely distinct. Loss of Hif1ab, Nrf1, Tbx2b, and Zbtb7a, central regulators of the regenerating epicardial network, in injured hearts resulted in elevated epicardial cell numbers infiltrating the wound and excess fibrosis after cryoinjury. Our work identifies differences between the regulatory blueprint deployed during epicardial development and regeneration, underlining that heart regeneration goes beyond the reactivation of developmental programs.
Antibody agonists trigger immune receptor signaling through local exclusion of receptor-type protein tyrosine phosphatases.
Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.
Transcriptional reprogramming via signaling domains of CD2, CD28, and 4-1BB.
Costimulatory signals provided to T cells during antigen encounter have a decisive role in the outcome of immune responses. Here, we used chimeric receptors harboring the extracellular domain of mouse inducible T cell costimulator (mICOS) to study transcriptional activation mediated by cytoplasmic sequences of the major T cell costimulatory receptors CD28, 4-1BB, and CD2. The chimeric receptors were introduced in a T cell reporter platform that allows to simultaneously evaluate nuclear factor κB (NF-κB), NFAT, and AP-1 activation. Engagement of the chimeric receptors induced distinct transcriptional profiles. CD28 signaling activated all three transcription factors, whereas 4-1BB strongly promoted NF-κB and AP-1 but downregulated NFAT activity. CD2 signals resulted in the strongest upregulation of NFAT. Transcriptome analysis revealed pronounced and distinct gene expression signatures upon CD2 and 4-1BB signaling. Using the intracellular sequence of CD28, we exemplify that distinct signaling motifs endow chimeric receptors with different costimulatory capacities.
Highlights from the 1st European cancer dependency map symposium and workshop.
The systematic identification of tumour vulnerabilities through perturbational experiments on cancer models, including genome editing and drug screens, is playing a crucial role in combating cancer. This collective effort is known as the Cancer Dependency Map (DepMap). The 1st European Cancer Dependency Map Symposium (EuroDepMap), held in Milan last May, featured talks, a roundtable discussion, and a poster session, showcasing the latest discoveries and future challenges related to the DepMap. The symposium aimed to facilitate interactions among participants across Europe, encourage idea exchange with leading experts, and present their work and future projects. Importantly, it sparked discussions on future endeavours, such as screening more complex cancer models and accounting for tumour evolution.
Structure of a fully assembled γδ T cell antigen receptor.
T cells in jawed vertebrates comprise two lineages, αβ T cells and γδ T cells, defined by the antigen receptors they express-that is, αβ and γδ T cell receptors (TCRs), respectively. The two lineages have different immunological roles, requiring that γδ TCRs recognize more structurally diverse ligands1. Nevertheless, the receptors use shared CD3 subunits to initiate signalling. Whereas the structural organization of αβ TCRs is understood2,3, the architecture of γδ TCRs is unknown. Here, we used cryogenic electron microscopy to determine the structure of a fully assembled, MR1-reactive, human Vγ8Vδ3 TCR-CD3δγε2ζ2 complex bound by anti-CD3ε antibody Fab fragments4,5. The arrangement of CD3 subunits in γδ and αβ TCRs is conserved and, although the transmembrane α-helices of the TCR-γδ and -αβ subunits differ markedly in sequence, packing of the eight transmembrane-helix bundles is similar. However, in contrast to the apparently rigid αβ TCR2,3,6, the γδ TCR exhibits considerable conformational heterogeneity owing to the ligand-binding TCR-γδ subunits being tethered to the CD3 subunits by their transmembrane regions only. Reducing this conformational heterogeneity by transfer of the Vγ8Vδ3 TCR variable domains to an αβ TCR enhanced receptor signalling, suggesting that γδ TCR organization reflects a compromise between efficient signalling and the ability to engage structurally diverse ligands. Our findings reveal the marked structural plasticity of the TCR on evolutionary timescales, and recast it as a highly versatile receptor capable of initiating signalling as either a rigid or flexible structure.
GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis.
Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.
The Tudor SND1 protein is an m6A RNA reader essential for replication of Kaposi's sarcoma-associated herpesvirus.
N6-methyladenosine (m6A) is the most abundant internal RNA modification of cellular mRNAs. m6A is recognised by YTH domain-containing proteins, which selectively bind to m6A-decorated RNAs regulating their turnover and translation. Using an m6A-modified hairpin present in the Kaposi's sarcoma associated herpesvirus (KSHV) ORF50 RNA, we identified seven members from the 'Royal family' as putative m6A readers, including SND1. RIP-seq and eCLIP analysis characterised the SND1 binding profile transcriptome-wide, revealing SND1 as an m6A reader. We further demonstrate that the m6A modification of the ORF50 RNA is critical for SND1 binding, which in turn stabilises the ORF50 transcript. Importantly, SND1 depletion leads to inhibition of KSHV early gene expression showing that SND1 is essential for KSHV lytic replication. This work demonstrates that members of the 'Royal family' have m6A-reading ability, greatly increasing their epigenetic functions beyond protein methylation.
HLA-dependent variation in SARS-CoV-2 CD8+ T cell cross-reactivity with human coronaviruses
Pre-existing T cell immunity to SARS-CoV-2 in individuals without prior exposure to SARS-CoV-2 has been reported in several studies. While emerging evidence hints toward prior exposure to common-cold human coronaviruses (HCoV), the extent of- and conditions for-cross-protective immunity between SARS-CoV-2 and HCoVs remain open. Here, by leveraging a comprehensive pool of publicly available functionally evaluated SARS-CoV-2 peptides, we report 126 immunogenic SARS-CoV-2 peptides with high sequence similarity to 285 MHC-presented target peptides from at least one of four HCoV, thus providing a map describing the landscape of SARS-CoV-2 shared and private immunogenic peptides with functionally validated T cell responses. Using this map, we show that while SARS-CoV-2 immunogenic peptides in general exhibit higher level of dissimilarity to both self-proteome and -microbiomes, there exist several SARS-CoV-2 immunogenic peptides with high similarity to various human protein coding genes, some of which have been reported to have elevated expression in severe COVID-19 patients. We then combine our map with a SARS-CoV-2-specific TCR repertoire data from COVID-19 patients and healthy controls and show that whereas the public repertoire for the majority of convalescent patients are dominated by TCRs cognate to private SARS-CoV-2 peptides, for a subset of patients, more than 50% of their public repertoires that show reactivity to SARS-CoV-2, consist of TCRs cognate to shared SARS-CoV-2-HCoV peptides. Further analyses suggest that the skewed distribution of TCRs cognate to shared and private peptides in COVID-19 patients is likely to be HLA-dependent. Finally, by utilising the global prevalence of HLA alleles, we provide 10 peptides with known cognate TCRs that are conserved across SARS-CoV-2 and multiple human coronaviruses and are predicted to be recognised by a high proportion of the global population. Overall, our work indicates the potential for HCoV-SARS-CoV-2 reactive CD8 + T cells, which is likely dependent on differences in HLA-coding genes among individuals. These findings may have important implications for COVID-19 heterogeneity and vaccine-induced immune responses as well as robustness of immunity to SARS-CoV-2 and its variants.
Single-cell atlas of colonic CD8+ T cells in ulcerative colitis.
Colonic antigen-experienced lymphocytes such as tissue-resident memory CD8+ T cells can respond rapidly to repeated antigen exposure. However, their cellular phenotypes and the mechanisms by which they drive immune regulation and inflammation remain unclear. Here we compiled an unbiased atlas of human colonic CD8+ T cells in health and ulcerative colitis (UC) using single-cell transcriptomics with T-cell receptor repertoire analysis and mass cytometry. We reveal extensive heterogeneity in CD8+ T-cell composition, including expanded effector and post-effector terminally differentiated CD8+ T cells. While UC-associated CD8+ effector T cells can trigger tissue destruction and produce tumor necrosis factor (TNF)-α, post-effector cells acquire innate signatures to adopt regulatory functions that may mitigate excessive inflammation. Thus, we identify colonic CD8+ T-cell phenotypes in health and UC, define their clonal relationships and characterize terminally differentiated dysfunctional UC CD8+ T cells expressing IL-26, which attenuate acute colitis in a humanized IL-26 transgenic mouse model.
Epithelial-derived gasdermin D mediates nonlytic IL-1β release during experimental colitis.
Gasdermin D (GSDMD) induces pyroptosis via the pore-forming activity of its N-terminal domain, cleaved by activated caspases associated with the release of IL-1β. Here, we report a nonpyroptotic role of full-length GSDMD in guiding the release of IL-1β-containing small extracellular vesicles (sEVs) from intestinal epithelial cells (IECs). In response to caspase-8 inflammasome activation, GSDMD, chaperoned by Cdc37/Hsp90, recruits the E3 ligase, NEDD4, to catalyze polyubiquitination of pro-IL-1β, serving as a signal for cargo loading into secretory vesicles. GSDMD and IL-1β colocalize with the exosome markers CD63 and ALIX intracellularly, and GSDMD and NEDD4 are required for release of CD63+ sEVs containing IL-1β, GSDMD, NEDD4, and caspase-8. Importantly, increased expression of epithelial-derived GSDMD is observed both in patients with inflammatory bowel disease (IBD) and those with experimental colitis. While GSDMD-dependent release of IL-1β-containing sEVs is detected in cultured colonic explants from colitic mice, GSDMD deficiency substantially attenuates disease severity, implicating GSDMD-mediated release of IL-1β sEVs in the pathogenesis of intestinal inflammation, such as that observed in IBD.
Dual RNA sequencing reveals dendritic cell reprogramming in response to typhoidal Salmonella invasion.
Salmonella enterica represent a major disease burden worldwide. S. enterica serovar Typhi (S. Typhi) is responsible for potentially life-threatening Typhoid fever affecting 10.9 million people annually. While non-typhoidal Salmonella (NTS) serovars usually trigger self-limiting diarrhoea, invasive NTS bacteraemia is a growing public health challenge. Dendritic cells (DCs) are key professional antigen presenting cells of the human immune system. The ability of pathogenic bacteria to subvert DC functions and prevent T cell recognition contributes to their survival and dissemination within the host. Here, we adapted dual RNA-sequencing to define how different Salmonella pathovariants remodel their gene expression in tandem with that of infected DCs. We find DCs harness iron handling pathways to defend against invading Salmonellas, which S. Typhi is able to circumvent by mounting a robust response to nitrosative stress. In parallel, we uncover the alternative strategies invasive NTS employ to impair DC functions.
Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease.
Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cell function. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.
Single cell spatial analysis reveals inflammatory foci of immature neutrophil and CD8 T cells in COVID-19 lungs.
Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis.
R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon.
The colonic epithelial turnover is driven by crypt-base stem cells that express the R-spondin receptor Lgr5. Signals that regulate epithelial regeneration upon stem cell injury are largely unknown. Here, we explore the dynamics of Wnt signaling in the colon. We identify two populations of cells with active Wnt signaling: highly proliferative Lgr5+/Axin2+ cells, as well as secretory Lgr5-/Axin2+ cells. Upon Lgr5+ cell depletion, these cells are recruited to contribute to crypt regeneration. Chemical injury induced by DSS leads to a loss of both Lgr5+ cells and Axin2+ cells and epithelial regeneration is driven by Axin2- cells, including differentiated Krt20+ surface enterocytes. Regeneration requires stromal Rspo3, which is present at increased levels upon injury and reprograms Lgr5- but Lgr4+ differentiated cells. In contrast, depletion of stromal Rspo3 impairs crypt regeneration, even upon mild injury. We demonstrate that Rspo3 is essential for epithelial repair via induction of Wnt signaling in differentiated cells.