Search results
Found 10097 matches for
Negative effect of DNA hypermethylation on the outcome of intensive chemotherapy in older patients with high-risk myelodysplastic syndromes and acute myeloid leukemia following myelodysplastic syndrome.
PURPOSE: Promoter hypermethylation of, for example, tumor-suppressor genes, is considered to be an important step in cancerogenesis and a negative risk factor for survival in patients with myelodysplastic syndromes (MDS); however, its role for response to therapy has not been determined. This study was designed to assess the effect of methylation status on the outcome of conventional induction chemotherapy. EXPERIMENTAL DESIGN: Sixty patients with high-risk MDS or acute myeloid leukemia following MDS were treated with standard doses of daunorubicin and 1-beta-d-arabinofuranosylcytosine. Standard prognostic variables and methylation status of the P15(ink4b) (P15), E-cadherin (CDH), and hypermethylated in cancer 1 (HIC) genes were analyzed before treatment. RESULTS: Forty percent of the patients achieved complete remission (CR). CR rate was lower in patients with high WBC counts (P = 0.03) and high CD34 expression on bone marrow cells (P = 0.02). Whereas P15 status alone was not significantly associated with CR rate (P = 0.25), no patient with hypermethylation of all three genes achieved CR (P = 0.03). Moreover, patients with CDH methylation showed a significantly lower CR rate (P = 0.008), and CDH methylation retained its prognostic value also in the multivariate analysis. Hypermethylation was associated with increased CD34 expression, but not with other known predictive factors for response, such as cytogenetic profile. CONCLUSIONS: We show for the first time a significant effect of methylation status on the outcome of conventional chemotherapy in high-risk MDS and acute myelogenous leukemia following MDS. Provided confirmed in an independent study, our results should be used as a basis for therapeutic decision-making in this patient group.
Transforming growth factor-beta1 abrogates Fas-induced growth suppression and apoptosis of murine bone marrow progenitor cells.
Fas, a member of the tumor necrosis factor (TNF ) receptor superfamily is a critical downregulator of cellular immune responses. Proinflammatory cytokines like interferon-gamma (IFN-gamma) and TNF-alpha can induce Fas expression and render hematopoietic progenitor cells susceptible to Fas-induced growth suppression and apoptosis. Transforming growth factor-beta1 (TGF-beta1 ) is an essential anti-inflammatory cytokine, thought to play a key role in regulating hematopoiesis. In the present studies we investigated whether TGF-beta1 might regulate growth suppression and apoptosis of murine hematopoietic progenitor cells signaled through Fas. In the presence of TNF, activation of Fas almost completely blocked clonogenic growth of lineage-depleted (Lin-) bone marrow (BM) progenitor cells in response to granulocyte-macrophage colony-stimulating factor (GM-CSF ), CSF-1, or a combination of multiple cytokines. Whereas TGF-beta1 alone had no effect or stimulated growth in response to these cytokines, it abrogated Fas-induced growth suppression. Single-cell studies and delayed addition of TGF-beta1 showed that the ability of TGF-beta1 to inhibit Fas-induced growth suppression was directly mediated on the progenitor cells and not indirect through potentially contaminating accessory cells. Furthermore, TGF-beta1 blocked Fas-induced apoptosis of Lin- BM cells, but did not affect Fas-induced apoptosis of thymocytes. TGF-beta1 also downregulated the expression of Fas on Lin- BM cells. Thus, TGF-beta1 potently and directly inhibits activation-dependent and Fas-mediated growth suppression and apoptosis of murine BM progenitor cells, an effect that appears to be distinct from its ability to induce progenitor cell-cycle arrest. Consequently, TGF-beta1 might act to protect hematopoietic progenitor cells from enhanced Fas expression and function associated with proinflammatory responses.
Interleukin-3 supports expansion of long-term multilineage repopulating activity after multiple stem cell divisions in vitro.
Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin(-)Sca-1(+)kit(+) bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3. (Blood. 2000;96:1748-1755)
Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors.
Whereas maintenance of hematopoietic stem cells (HSCs) is a requisite for life, uncontrolled expansion of HSCs might enhance the propensity for leukemic transformation. Accordingly, HSC numbers are tightly regulated. The identification of physical cellular HSC niches has underscored the importance of extrinsic regulators of HSC homeostasis. However, whereas extrinsic positive regulators of HSCs have been identified, opposing extrinsic repressors of HSC expansion in vivo have yet to be described. Like many other acute and chronic inflammatory diseases, bone marrow (BM) failure syndromes are associated with tumor necrosis factor-α (TNF) overexpression. However, the in vivo relevance of TNF in the regulation of HSCs has remained unclear. Of considerable relevance for normal hematopoiesis and in particular BM failure syndromes, we herein demonstrate that TNF is a cell-extrinsic and potent endogenous suppressor of normal HSC activity in vivo in mice. These effects of TNF involve two distinct TNF receptors.
Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK.
The role of cytokines as regulators of hematopoietic stem cell (HSC) expansion remains elusive. Herein, we identify thrombopoietin (THPO) and the cytokine signaling inhibitor LNK, as opposing physiological regulators of HSC expansion. Lnk(-/-) HSCs continue to expand postnatally, up to 24-fold above normal by 6 mo of age. Within the stem cell compartment, this expansion is highly selective for self-renewing long-term HSCs (LT-HSCs), which show enhanced THPO responsiveness. Lnk(-/-) HSC expansion is dependent on THPO, and 12-wk-old Lnk(-/-)Thpo(-/-) mice have 65-fold fewer LT-HSCs than Lnk(-/-) mice. Expansions of multiple myeloid, but not lymphoid, progenitors in Lnk(-/-) mice also proved THPO-dependent.
Human CD34+ hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3: distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cells.
The cytokine tyrosine kinase receptors c-kit and flt3 are expressed and function in early mouse and human hematopoiesis. Through its ability to promote ex vivo expansion and oncoretroviral transduction of primitive human hematopoietic progenitors, the flt3 ligand (FL) has emerged as a key stimulator of candidate human hematopoietic stem cells (HSCs). However, recent studies in the mouse suggest that though it is present on short-term repopulating cells, flt3 is not expressed on bone marrow long-term reconstituting HSCs, the ultimate target for the development of cell replacement and gene therapy. Herein we demonstrate that though only a fraction of human adult bone marrow and cord blood CD34+long-term culture-initiating cells (LTC-ICs) express flt3, most cord blood lymphomyeloid HSCs capable of in vivo reconstituting nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice are flt3+. The striking difference in flt3 and c-kit expression on mouse and candidate human HSCs translated into a corresponding difference in flt3 and c-kit function because FL was more efficient than SCF at supporting the survival of candidate human HSCs. In contrast, SCF is far superior to FL as a viability factor for mouse HSCs. Thus, the present data provide compelling evidence for a contrasting expression and response pattern of flt3 and c-kit on mouse and human HSCs.
TNF-alpha bidirectionally modulates the viability of primitive murine hematopoietic progenitor cells in vitro.
It is well established that TNF-alpha can induce apoptosis in many normal and transformed cell types. The effects of TNF-alpha on cytokine-induced proliferation and differentiation of normal hematopoietic progenitors have been characterized extensively, whereas little is known about how TNF-alpha can affect their viability. The present studies suggest, based on experiments using delayed addition of growth-promoting cytokines as well direct viability assays, that TNF-alpha bidirectionally affects the survival of individually cultured primitive Lin- Sca-1+ hematopoietic progenitors, in that stem cell factor (SCF)-, granulocyte-CSF-, IL-6-, and IL-11-induced survival is potently counteracted by TNF-alpha (42-86%), whereas TNF-alpha synergistically enhances IL-1alpha-induced survival up to threefold. The bidirectional effects of TNF-alpha on hematopoietic growth factor-induced survival of hematopoietic progenitors were reflected in that TNF-alpha enhanced apoptosis of Lin- Sca-1+ cells when combined with SCF, whereas TNF-alpha synergistically suppressed apoptosis in response to IL-1alpha.
Cytotoxic lymphocyte maturation factor (interleukin 12) is a synergistic growth factor for hematopoietic stem cells.
The recently cloned cytotoxic lymphocyte maturation factor (interleukin 12 [IL-12]) has been described as a growth factor for mature lymphocytes. The present study investigated whether purified recombinant murine IL-12 (rMuIL-12) also could affect the proliferation of primitive bone marrow progenitor cells. Using a population of Lin-Sca-1+ murine bone marrow stem cells, we now demonstrate that IL-12 is a potent synergistic factor for primitive hematopoietic stem cells. The synergy of IL-12 was observed in single-cell cloning assays, demonstrating that its effects are directly mediated. Specifically, IL-12 enhanced stem cell factor-induced myelopoiesis of Lin-Sca-1+ cells sevenfold, and synergized with colony-stimulating factors (CSFs) to induce proliferation of Lin-Sca-1+ stem cells. IL-12 increased the number of responding progenitor cells as well as the size of the colonies formed. IL-12 also increased colony formation of high proliferative potential colony-forming cells with multiple CSF combinations. The effects of IL-12 were concentration dependent with a 50% effective dose of 2-20 and 20-200 ng/ml, resulting in maximum stimulation. Furthermore, a neutralizing anti-IL-12 antibody blocked the synergistic effects of rMuIL-12. In addition, IL-12 was found to have synergistic effects on more committed bone marrow progenitors as well. Our results therefore suggest that in addition to being a potent lymphopoietic stimulator, IL-12 is a regulator of the growth of hematopoietic stem cells and their myeloid progeny.
Differential regulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2.
Inhibitor of DNA binding (Id) proteins function as inhibitors of members of the basic helix-loop-helix family of transcription factors and have been demonstrated to play an important role in regulating lymphopoiesis. However, the role of these proteins in regulation of myelopoiesis is currently unclear. In this study, we have investigated the role of Id1 and Id2 in the regulation of granulopoiesis. Id1 expression was initially up-regulated during early granulopoiesis, which was then followed by a decrease in expression during final maturation. In contrast, Id2 expression was up-regulated in terminally differentiated granulocytes. In order to determine whether Id expression plays a critical role in regulating granulopoiesis, Id1 and Id2 were ectopically expressed in CD34(+) cells by retroviral transduction. Our experiments demonstrate that constitutive expression of Id1 inhibits eosinophil development, whereas in contrast neutrophil differentiation was modestly enhanced. Constitutive Id2 expression accelerates final maturation of both eosinophils and neutrophils, whereas inhibition of Id2 expression blocks differentiation of both lineages. Transplantation of beta2-microglobulin(-/-) nonobese diabetic severe combined immunodeficient (NOD/SCID) mice with CD34(+) cells ectopically expressing Id1 resulted in enhanced neutrophil development, whereas ectopic expression of Id2 induced both eosinophil and neutrophil development. These data demonstrate that both Id1 and Id2 play a critical, although differential role in granulopoiesis.
Down-regulation of Mpl marks the transition to lymphoid-primed multipotent progenitors with gradual loss of granulocyte-monocyte potential.
Evidence for a novel route of adult hematopoietic stem-cell lineage commitment through Lin-Sca-1+Kit+Flt3hi (LSKFlt3hi) lymphoid-primed multipotent progenitors (LMPPs) with granulocyte/monocyte (GM) and lymphoid but little or no megakaryocyte/erythroid (MkE) potential was recently challenged, as LSKFlt3hi cells were reported to possess MkE potential. Herein, residual (1%-2%) MkE potential segregated almost entirely with LSKFlt3hi cells expressing the thrombopoietin receptor (Mpl), whereas LSKFlt3hiMpl- LMPPs lacked significant MkE potential in vitro and in vivo, but sustained combined GM and lymphoid potentials, and coexpressed GM and lymphoid but not MkE transcriptional lineage programs. Gradually increased transcriptional lymphoid priming in single LMPPs from Rag1GFP mice was shown to occur in the presence of maintained GM lineage priming, but gradually reduced GM lineage potential. These functional and molecular findings reinforce the existence of GM/lymphoid-restricted progenitors with dramatically down-regulated probability for committing toward MkE fates, and support that lineage restriction occurs through gradual rather than abrupt changes in specific lineage potentials.
Silencing of ASXL1 impairs the granulomonocytic lineage potential of human CD34+ progenitor cells
The ASXL1 gene encodes a chromatin-binding protein involved in epigenetic regulation in haematopoietic cells. Loss-of-function ASXL1 mutations occur in patients with a range of myeloid malignancies and are associated with adverse outcome. We have used lentiviral-based shRNA technology to investigate the effects of ASXL1 silencing on cell proliferation, apoptosis, myeloid differentiation and global gene expression in human CD34+ cells differentiated along the myeloid lineage in vitro. ASXL1-deficient cells showed a significant decrease in the generation of CD11b+ and CD15+ cells, implicating impaired granulomonocytic differentiation. Furthermore, colony-forming assays showed a significant increase in the number of multipotent mixed lineage colony-forming unit (CFU-GEMM) colonies and a significant decrease in the numbers of granulocyte-macrophage CFU (CFU-GM) and granulocyte CFU (CFU-G) colonies in ASXL1-deficient cells. Our data suggests that ASXL1 knockdown perturbs human granulomonocytic differentiation. Gene expression profiling identified many deregulated genes in the ASXL1-deficient cells differentiated along the granulomonocytic lineage, and pathway analysis showed that the most significantly deregulated pathway was the LXR/RXR activation pathway. ASXL1 may play a key role in recruiting the polycomb repressor complex 2 (PRC2) to specific loci, and we found over-representation of PRC2 targets among the deregulated genes in ASXL1-deficient cells. These findings shed light on the functional role of ASXL1 in human myeloid differentiation. © 2013 Blackwell Publishing Ltd.
Distinct and overlapping patterns of cytokine regulation of thymic and bone marrow-derived NK cell development.
Although bone marrow (BM) represents the main site for postnatal NK cell development, recently a distinct thymic-dependent NK cell pathway was identified. These studies were designed to investigate the role of cytokines in regulation of thymic NK cells and to compare with established regulatory pathways of BM-dependent NK cell compartment. The common cytokine receptor gamma-chain (Il2rg) essential for IL-15-induced signaling, and FMS-like tyrosine kinase 3 (FLT3) receptor ligand (Flt3l) were previously identified as important regulatory pathways of the BM NK cell compartment based on lack of function studies in mice, however their complementary action remains unknown. By investigating mice double-deficient in Il2rg and Flt3l (Flt3l(-/-) Il2rg(-/-)), we demonstrate that FLT3L is important for IL2Rg-independent maintenance of both immature BM as well as peripheral NK cells. In contrast to IL-7, which is dispensable for BM but important for thymic NK cells, IL-15 has a direct and important role in both thymic and BM NK cell compartments. Although thymic NK cells were not affected in Flt3l(-/-) mice, Flt3l(-/-)Il2rg(-/-) mice lacked detectable thymic NK cells, suggesting that FLT3L is also important for IL-2Rg-independent maintenance of thymic NK cells. Thus, IL-2Rg cytokines and FLT3L play complementary roles and are indispensable for homeostasis of both BM and thymic dependent NK cell development, suggesting that the cytokine pathways crucial for these two distinct NK cell pathways are largely overlapping.
Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells.
Laminins are alphabetagamma heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing alpha4 and alpha5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (alpha5beta1gamma1/alpha5beta2gamma1), laminin-8 (alpha4beta1gamma1), laminin-1 (alpha1beta1gamma1), and fibronectin. About 35% to 40% of CD34(+) and CD34(+)CD38(-) stem and progenitor cells adhered to laminin-10/11, and 45% to 50% adhered to fibronectin, whereas they adhered less to laminin-8 and laminin-1. Adhesion of CD34(+)CD38(-) cells to laminin-10/11 was maximal without integrin activation, whereas adhesion to other proteins was dependent on protein kinase C activation by 12-tetradecanoyl phorbol-13-acetate (TPA). Fluorescence-activated cell-sorting (FACS) analysis showed expression of integrin alpha6 chain on most CD34(+) and CD34(+)CD38(-) cells. Integrin alpha6 and beta1 chains were involved in binding of both cell fractions to laminin-10/11 and laminin-8. Laminin-10/11 was highly adhesive to lineage-committed myelomonocytic and erythroid progenitor cells and most lymphoid and myeloid cell lines studied, whereas laminin-8 was less adhesive. In functional assays, both laminin-8 and laminin-10/11 facilitated stromal-derived factor-1alpha (SDF-1alpha)-stimulated transmigration of CD34(+) cells, by an integrin alpha6 receptor-mediated mechanism. In conclusion, we demonstrate laminin isoform-specific adhesive interactions with human bone marrow stem, progenitor, and more differentiated cells. The cell-adhesive laminins affected migration of hematopoietic progenitors, suggesting a physiologic role for laminins during hematopoiesis.
Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement
© 2015 Macmillan Publishers Limited. Distinct from other forms of acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by an Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immunodeficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy-number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.
Mobilization of long-term reconstituting hematopoietic stem cells in mice by recombinant human interleukin 7.
Administration of recombinant human interleukin 7 (rh)IL-7 to mice has been reported by our group to increase the exportation of myeloid progenitors (colony-forming unit [CFU]-c and CFU-granulocyte erythroid megakarocyte macrophage) from the bone marrow to peripheral organs (blood, spleen[s], and liver). We now report that IL-7 also stimulates a sixfold increase in the number of more primitive CFU-S day 8 (CFU-S8) and day 12 (CFU-S12) in the peripheral blood leukocytes (PBL) of mice treated with rhIL-7 for 7 d. Moreover, > 90% of lethally irradiated recipient mice that received PBL from rhIL-7-treated donor mice have survived for > 6 mo whereas none of the recipient mice that received an equal number of PBL from diluent-treated donors survived. Flow cytometry analysis at 3 and 6 mo after transplantation revealed complete trilineage (T, B, and myelomonocytic cell) repopulation of bone marrow, thymus, and spleen by blood-borne stem/progenitor cells obtained from rhIL-7-treated donor mice. Thus, IL-7 may prove valuable for mobilizing pluripotent stem cells with long-term repopulating activity from the bone marrow to the peripheral blood for the purpose of gene modification and/or autologous or allogeneic stem cell transplantation.
The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: A systematic review.
BACKGROUND: The evidence for vitamin D and other agents that experimentally modulate T regulatory cells (Tregs) for the treatment of patients with autoimmune or allergic diseases has not been established. OBJECTIVE: We have undertaken a systematic review of randomised controlled trials to assess the efficacy of vitamin D, vitamin A, niacin and short-chain fatty acids in enhancing absolute Treg numbers and phenotypes in patients with inflammatory or autoimmune disease. METHODS: This systematic review was conducted using a predefined protocol (PROSPERO International prospective register of systematic reviews, ID = CRD42016048648/ CRD42016048646). Randomised controlled trials of patients with inflammatory or autoimmune disease or healthy participants which compared either oral vitamin D or vitamin A or short-chain fatty acids with control or placebo and measured the absolute concentration of proportion of Tregs were eligible for inclusion. Searches of electronic databases (CENTRAL, MEDLINE, EMBASE, CINAHL, PUBMED and Web of Science) identified eight eligible independent trials (seven autoimmune disease trials, one trial of healthy subjects). Data were extracted by two reviewers and the risk of study bias was assessed using Cochrane Collaboration methodology. RESULTS: Planned meta-analysis was not possible due to the heterogeneous nature of the studies. Nevertheless, in five trials of autoimmune disorders which measured the proportion of Tregs, a higher proportion was observed in the vitamin D group compared to controls at 12 months in all but one trial. In the trial of healthy subjects, a significant difference was reported, with a higher percentage of Tregs observed in the vitamin D group (at 12 weeks, mean 6.4% (SD 0.8%) (vitamin D) vs 5.5% (1.0%) (placebo). There were no trials to assess the efficacy of vitamin A, niacin and short-chain fatty acids in enhancing absolute Treg numbers. CONCLUSIONS: Vitamin D supplementation may increase Treg/CD3 ratios in both healthy individuals and patients with autoimmune disorders and may increase Treg function. There remains a need for further suitably powered clinical studies aimed at enhancing Treg numbers and/or function.
Targeting Splicing in the Treatment of Myelodysplastic Syndromes and Other Myeloid Neoplasms.
Genome sequencing of primary cells from patients with myelodysplastic syndromes (MDS) led to the identification of recurrent heterozygous mutations in gene encoding components of the spliceosome, the cellular machinery which processes pre-messenger RNA (mRNA) to mature mRNA during gene transcription. Splicing mutations are mutually exclusive with one another and collectively represent the most common mutation class in MDS, occurring in approximately 60 % of patients overall and more than 80 % of those with ring sideroblasts. Evidence from animal models suggests that homozygous splicing mutations are lethal, and that in heterozygously mutated models, any further disruption of splicing triggers apoptosis and cell death. MDS cells with spliceosome mutations are thus uniquely vulnerable to therapies targeting splicing, which may be tolerated by healthy cells. The spliceosome is emerging as a novel therapeutic target in MDS and related myeloid neoplasms, with the first clinical trial of a splicing modulator opening in 2016.
Autoimmune cytopenias and thrombotic thrombocytopenic purpura.
The autoimmune cytopenias are a group of disorders resulting primarily from autoantibody-mediated destruction of blood cells, with variable clinical sequelae depending on the severity and lineage affected. Disease presentation ranges from an asymptomatic finding on a routine full blood count to an acutely unwell patient suffering the clinical consequences of severe anaemia, neutropenia or thrombocytopenia. The cytopenia may be primary or secondary to underlying infectious, immune or malignant processes. Thrombotic thrombocytopenic purpura (TTP) is a distinct, rare but potentially life-threatening entity that classically but not invariably presents with a pentad of acute onset haemolytic anaemia, thrombocytopenia, neurological symptoms, renal impairment and fevers. Autoimmune cytopenias have formed a recognised diagnostic entity for over 150 years yet continue to present a challenge in medical practice due to heterogeneity in clinical presentation and triggering factors, an incomplete understanding of underlying pathophysiology and a lack of evidence-based therapeutic approaches.