Search results
Found 10080 matches for
Dengue virus co-opts innate type 2 pathways to escape early control of viral replication.
Mast cell products and high levels of type 2 cytokines are associated with severe dengue disease. Group 2 innate lymphoid cells (ILC2) are type-2 cytokine-producing cells that are activated by epithelial cytokines and mast cell-derived lipid mediators. Through ex vivo RNAseq analysis, we observed that ILC2 are activated during acute dengue viral infection, and show an impaired type I-IFN signature in severe disease. We observed that circulating ILC2 are permissive for dengue virus infection in vivo and in vitro, particularly when activated through prostaglandin D2 (PGD2). ILC2 underwent productive dengue virus infection, which was inhibited through CRTH2 antagonism. Furthermore, exogenous IFN-β induced expression of type I-IFN responsive anti-viral genes by ILC2. PGD2 downregulated type I-IFN responsive gene and protein expression; and urinary prostaglandin D2 metabolite levels were elevated in severe dengue. Moreover, supernatants from activated ILC2 enhanced monocyte infection in a GM-CSF and mannan-dependent manner. Our results indicate that dengue virus co-opts an innate type 2 environment to escape early type I-IFN control and facilitate viral dissemination. PGD2 downregulates type I-IFN induced anti-viral responses in ILC2. CRTH2 antagonism may be a therapeutic strategy for dengue-associated disease.
The Structure, Function, and Physiology of the Fetal and Adult Acetylcholine Receptor in Muscle.
The neuromuscular junction (NMJ) is a highly developed synapse linking motor neuron activity with muscle contraction. A complex of molecular cascades together with the specialized NMJ architecture ensures that each action potential arriving at the motor nerve terminal is translated into an action potential in the muscle fiber. The muscle-type nicotinic acetylcholine receptor (AChR) is a key molecular component located at the postsynaptic muscle membrane responsible for the generation of the endplate potential (EPP), which usually exceeds the threshold potential necessary to activate voltage-gated sodium channels and triggers a muscle action potential. Two AChR isoforms are found in mammalian muscle. The fetal isoform is present in prenatal stages and is involved in the development of the neuromuscular system whereas the adult isoform prevails thereafter, except after denervation when the fetal form is re-expressed throughout the muscle. This review will summarize the structural and functional differences between the two isoforms and outline congenital and autoimmune myasthenic syndromes that involve the isoform specific AChR subunits.
Orchestrated control of filaggrin-actin scaffolds underpins cornification.
Epidermal stratification critically depends on keratinocyte differentiation and programmed death by cornification, leading to formation of a protective skin barrier. Cornification is dynamically controlled by the protein filaggrin, rapidly released from keratohyalin granules (KHGs). However, the mechanisms of cornification largely remain elusive, partly due to limitations of the observation techniques employed to study filaggrin organization in keratinocytes. Moreover, while the abundance of keratins within KHGs has been well described, it is not clear whether actin also contributes to their formation or fate. We employed advanced (super-resolution) microscopy to examine filaggrin organization and dynamics in skin and human keratinocytes during differentiation. We found that filaggrin organization depends on the cytoplasmic actin cytoskeleton, including the role for α- and β-actin scaffolds. Filaggrin-containing KHGs displayed high mobility and migrated toward the nucleus during differentiation. Pharmacological disruption targeting actin networks resulted in granule disintegration and accelerated cornification. We identified the role of AKT serine/threonine kinase 1 (AKT1), which controls binding preference and function of heat shock protein B1 (HspB1), facilitating the switch from actin stabilization to filaggrin processing. Our results suggest an extended model of cornification in which filaggrin utilizes actins to effectively control keratinocyte differentiation and death, promoting epidermal stratification and formation of a fully functional skin barrier.
Overcoming Symmetry Mismatch in Vaccine Nanoassembly through Spontaneous Amidation.
Matching of symmetry at interfaces is a fundamental obstacle in molecular assembly. Virus-like particles (VLPs) are important vaccine platforms against pathogenic threats, including Covid-19. However, symmetry mismatch can prohibit vaccine nanoassembly. We established an approach for coupling VLPs to diverse antigen symmetries. SpyCatcher003 enabled efficient VLP conjugation and extreme thermal resilience. Many people had pre-existing antibodies to SpyTag:SpyCatcher but less to the 003 variants. We coupled the computer-designed VLP not only to monomers (SARS-CoV-2) but also to cyclic dimers (Newcastle disease, Lyme disease), trimers (influenza hemagglutinins), and tetramers (influenza neuraminidases). Even an antigen with dihedral symmetry could be displayed. For the global challenge of influenza, SpyTag-mediated display of trimer and tetramer antigens strongly induced neutralizing antibodies. SpyCatcher003 conjugation enables nanodisplay of diverse symmetries towards generation of potent vaccines.
Mortality in dementia with Lewy bodies compared with Alzheimer's dementia: a retrospective naturalistic cohort study.
ObjectivesTo use routine clinical data to investigate survival in dementia with Lewy bodies (DLB) compared with Alzheimer's dementia (AD). DLB is the second most common dementia subtype after AD, accounting for around 7% of dementia diagnoses in secondary care, though studies suggest that it is underdiagnosed by up to 50%. Most previous studies of DLB have been based on select research cohorts, so little is known about the outcome of the disease in routine healthcare settings.SettingCambridgeshire & Peterborough NHS Foundation Trust, a mental health trust providing secondary mental health care in England.Sample251 DLB and 222 AD identified from an anonymised database derived from electronic clinical case records across an 8-year period (2005-2012), with mortality data updated to May 2015.ResultsRaw (uncorrected) median survival was 3.72 years for DLB (95% CI 3.33 to 4.14) and 6.95 years for AD (95% CI 5.78 to 8.12). Controlling for age at diagnosis, comorbidity and antipsychotic prescribing the model predicted median survival for DLB was 3.3 years (95% CI 2.88 to 3.83) for males and 4.0 years (95% CI 3.55 to 5.00) for females, while median survival for AD was 6.7 years (95% CI 5.27 to 8.51) for males and 7.0 years (95% CI 5.92 to 8.73) for females.ConclusionSurvival from first presentation with cognitive impairment was markedly shorter in DLB compared with AD, independent of age, sex, physical comorbidity or antipsychotic prescribing. This finding, in one of the largest clinical cohorts of DLB cases assembled to date, adds to existing evidence for poorer survival for DLB versus AD. There is an urgent need for further research to understand possible mechanisms accounting for this finding.
Differences between psychoacoustic and frequency following response measures of distortion tone level and masking.
The scalp-recorded frequency following response (FFR) in humans was measured for a 244-Hz pure tone at a range of input levels and for complex tones containing harmonics 2-4 of a 300-Hz fundamental, but shifted by ±56 Hz. The effective magnitude of the cubic difference tone (CDT) and the quadratic difference tone (QDT, at F(2)-F(1)) in the FFR for the complex was estimated by comparing the magnitude spectrum of the FFR at the distortion product (DP) frequency with that for the pure tone. The effective DP levels in the FFR were higher than those commonly estimated in psychophysical experiments, indicating contributions to the DP in the FFR in addition to the audible propagated component. A low-frequency narrowband noise masker reduced the magnitude of FFR responses to the CDT but also to primary components over a wide range of frequencies. The results indicate that audible DPs may contribute very little to the DPs observed in the FFR and that using a narrowband noise for the purpose of masking audible DPs can have undesired effects on the FFR over a wide frequency range. The results are consistent with the notion that broadly tuned mechanisms central to the auditory nerve strongly influence the FFR.
No evidence for ITD-specific adaptation in the frequency following response.
Neurons sensitive to interaural time differences (ITDs) in the fine structure of low-frequency signals have been found in binaurally responsive auditory nuclei in a wide range of species. The present study investigated whether the frequency following response (FFR) would show evidence for neurons “tuned” to ITD in humans. The FFR is a scalp-recorded measure of sustained phase-locked brainstem activity that has been shown to follow the frequency of low-frequency tones. The magnitude of the FFR often decreases over time for tones of long duration. The present study investigated whether this adaptation effect is ITD specific.The FFR to a 100-ms, 80-dB SPL, 504-Hz target tone was measured for ten subjects. The target was preceded by a 200-ms, 80-dB SPL, 504-Hz adaptor. The target always led by 0.5 ms in the left ear. The adaptor led either in the left ear or in the right ear by 0.5 ms. Stimuli (adaptor + target = pair) were presented in alternating polarity at a rate of 1.81 Hz. We used a “vertical” montage (+Fz, – C7, ground = Fpz) for which the FFR is assumed to reflect phase-locked neural activity from rostral generators in the brainstem. The averaged FFR waveforms for each polarity were subtracted, to enhance temporal fine structure responses. The results showed significant adaptation effects in the spectral magnitude of the FFR. However, adaptation was not larger when the adaptor had the same ITD as the target than when the ITD of the adaptor differed from that of the target. Thus, the current data provide no evidence that the spectral magnitude of the scalp-recorded FFR provides a non-invasive indicator of ITD-specific neural activation.
Hyperleucocytosis following G-CSF treatment for sulfasalazine-induced agranulocytosis.
Agranulocytosis is a rare but serious adverse effect of sulfasalazine treatment. We present a case of a 51-year-old woman receiving sulfasalazine for inflammatory arthritis presenting with sore throat, fever, lethargy and leucopenia (white cell count 0.9 × 10(9)/L). After 9 days of treatment with filgrastim (granulocyte-colony stimulating factor, G-CSF), her white cell count increased to 77.4 × 10(9)/L. This case highlights the importance of recognising sulfasalazine-induced agranulocytosis and the management of hyperleucocytosis following G-CSF treatment, to prevent harmful sequelae.
NDRG1 is induced by antigen-receptor signaling but dispensable for B and T cell self-tolerance.
Peripheral tolerance prevents the initiation of damaging immune responses by autoreactive lymphocytes. While tolerogenic mechanisms are tightly regulated by antigen-dependent and independent signals, downstream pathways are incompletely understood. N-myc downstream-regulated gene 1 (NDRG1), an anti-cancer therapeutic target, has previously been implicated as a CD4+ T cell clonal anergy factor. By RNA-sequencing, we identified Ndrg1 as the third most upregulated gene in anergic, compared to naïve follicular, B cells. Ndrg1 is upregulated by B cell receptor activation (signal one) and suppressed by co-stimulation (signal two), suggesting that NDRG1 may be important in B cell tolerance. However, though Ndrg1-/- mice have a neurological defect mimicking NDRG1-associated Charcot-Marie-Tooth (CMT4d) disease, primary and secondary immune responses were normal. We find that B cell tolerance is maintained, and NDRG1 does not play a role in downstream responses during re-stimulation of in vivo antigen-experienced CD4+ T cells, demonstrating that NDGR1 is functionally redundant for lymphocyte anergy.
B-cell-autonomous somatic mutation deficit following bone marrow transplant.
Hematopoietic stem cell transplantation is characterized by a prolonged period of humoral immunodeficiency. We have previously shown that the deficiencies are probably not due to the failure to utilize the appropriate V regions in the pre-immune repertoire. However, a striking observation, which correlated with the absence of immunoglobulin IgD(-) cells and was consistent with a defect in antigen-driven responses, was that rearrangements in bone marrow transplant (BMT) recipients exhibited much less somatic mutation than did rearrangements obtained from healthy subjects. In this paper, we present evidence suggesting that naive B cells obtained from BMT recipients lack the capacity to accumulate somatic mutations in a T-cell-dependent manner compared with healthy subjects. This appears to be a B-cell-autonomous deficit because T cells from some patients, which were not able to support the accumulation of mutations in autologous naive B cells, were able to support accumulation of mutations in heterologous healthy-subject naive B cells.
Immune Responses to a Single Dose of the AZD1222/Covishield Vaccine at 16 Weeks in Individuals in Sri Lanka.
Due to limited access to vaccines, many countries have only administered a single dose of the AZD1222, whereas the dosage intervals have increased ≥4 wk. We sought to investigate the immunogenicity of a single dose of vaccine at ≥16 wk postimmunization. Severe acute respiratory syndrome coronavirus 2-specific Abs in 553 individuals and Abs to the receptor-binding domain of the Wuhan virus (wild-type) and the variants of concern, angiotensin-converting enzyme 2 receptor blocking Abs ex vivo and cultured IFN-γ T cell (Homo sapiens) responses and B cell (H. sapiens) ELISPOT responses, were investigated in a subcohort. The seropositivity rates in those >70 y of age (93.7%) was not significantly different compared with other age groups (97.7-98.2; Pearson χ2 = 7.8; p = 0.05). The Ab titers (Ab index) significantly declined (p < 0.0001) with increase in age. A total of 18 of 69 (26.1%) of individuals did not have angiotensin-converting enzyme 2 receptor-blocking Abs, whereas responses to the receptor-binding domain of wild-type (p = 0.03), B.1.1.7 (p = 0.04), and B.1.617.2 (p = 0.02) were significantly lower in those who were >60 y. Ex vivo IFN-γ T cell ELISPOT responses were seen in 10 of 66 (15.1%), whereas only a few expressed CD107a. However, >85% had a high frequency of cultured IFN-γ T cell ELISPOT responses and B cell ELISPOTs. Virus-specific Abs were maintained at ≥16 wk after receiving a single dose of AZD1222, although levels were lower to variants of concern, especially in older individuals. A single dose induced a high frequency of memory T and B cell responses.
A haemagglutination test for rapid detection of antibodies to SARS-CoV-2.
Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests do not require special equipment, are read by eye, have short development times, low cost and can be applied at the Point of Care. Here we describe a quantitative Haemagglutination test (HAT) for the detection of antibodies to the receptor binding domain of the SARS-CoV-2 spike protein. The HAT has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. We will supply aliquots of the test reagent sufficient for ten thousand test wells free of charge to qualified research groups anywhere in the world.
Development of a T7 RNA polymerase expressing cell line using lentivirus vectors for the recovery of recombinant Newcastle disease virus.
The development of a T7 RNA polymerase (T7 RNAP) expressing cell line i.e. BSR T7/5 cells marks an improvement of reverse genetics for the recovery of recombinant Newcastle disease virus (rNDV). BSR T7/5 is developed by transient transfection of plasmid encoding T7 RNAP gene for rNDV rescue. However, the gene expression decreases gradually over multiple passages and eventually hinders the rescue of rNDV. To address this issue, lentiviral vector was used to develop T7 RNAP-expressing HEK293-TA (HEK293-TA-Lv-T7) and SW620 (SW620-Lv-T7) cell lines, evidenced by the expression of T7 RNAP after subsequent 20 passages. rNDV was rescued successfully using HEK293-TA-Lv-T7 clones (R1D3, R1D8, R5B9) and SW620-Lv-T7 clones (R1C11, R3C5) by reverse transfection, yielding comparable virus rescue efficiency and virus titres to that of BSR T7/5. This study provides new tools for rNDV rescue and insights into cell line development and virology by reverse genetics.
SpySwitch enables pH- or heat-responsive capture and release for plug-and-display nanoassembly.
Proteins can be empowered via SpyTag for anchoring and nanoassembly, through covalent bonding to SpyCatcher partners. Here we generate a switchable version of SpyCatcher, allowing gentle purification of SpyTagged proteins. We introduce numerous histidines adjacent to SpyTag's binding site, giving moderate pH-dependent release. After phage-based selection, our final SpySwitch allows purification of SpyTag- and SpyTag003-fusions from bacterial or mammalian culture by capture at neutral pH and release at pH 5, with purity far beyond His-tag methods. SpySwitch is also thermosensitive, capturing at 4 °C and releasing at 37 °C. With flexible choice of eluent, SpySwitch-purified proteins can directly assemble onto multimeric scaffolds. 60-mer multimerization enhances immunogenicity and we use SpySwitch to purify receptor-binding domains from SARS-CoV-2 and 11 other sarbecoviruses. For these receptor-binding domains we determine thermal resilience (for mosaic vaccine development) and cross-recognition by antibodies. Antibody EY6A reacts across all tested sarbecoviruses, towards potential application against new coronavirus pandemic threats.
Mosaic RBD nanoparticles protect against multiple sarbecovirus challenges in animal models.
To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against conserved/relatively-occluded, rather than variable/immunodominant/exposed, epitopes. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicron and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.