Search results
Found 10093 matches for
Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome.
GATA-1 is the founding member of a transcription factor family that regulates growth and maturation of a diverse set of tissues. GATA-1 is expressed primarily in hematopoietic cells and is essential for proper development of erythroid cells, megakaryocytes, eosinophils, and mast cells. Although loss of GATA-1 leads to differentiation arrest and apoptosis of erythroid progenitors, absence of GATA-1 promotes accumulation of immature megakaryocytes. Recently, we and others have reported that mutagenesis of GATA1 is an early event in Down syndrome (DS) leukemogenesis. Acquired mutations in GATA1 were detected in the vast majority of patients with acute megakaryoblastic leukemia (DS-AMKL) and in nearly every patient with transient myeloproliferative disorder (TMD), a "preleukemia" that may be present in as many as 10% of infants with DS. Although the precise pathway by which mutagenesis of GATA1 contributes to leukemia is unknown, these findings confirm that GATA1 plays an important role in both normal and malignant hematopoiesis. Future studies to define the mechanism that results in the high frequency of GATA1 mutations in DS and the role of altered GATA1 in TMD and DS-AMKL will shed light on the multistep pathway in human leukemia and may lead to an increased understanding of why children with DS are markedly predisposed to leukemia.
Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts.
BACKGROUND: Myelodysplastic syndromes are a diverse and common group of chronic hematologic cancers. The identification of new genetic lesions could facilitate new diagnostic and therapeutic strategies. METHODS: We used massively parallel sequencing technology to identify somatically acquired point mutations across all protein-coding exons in the genome in 9 patients with low-grade myelodysplasia. Targeted resequencing of the gene encoding RNA splicing factor 3B, subunit 1 (SF3B1), was also performed in a cohort of 2087 patients with myeloid or other cancers. RESULTS: We identified 64 point mutations in the 9 patients. Recurrent somatically acquired mutations were identified in SF3B1. Follow-up revealed SF3B1 mutations in 72 of 354 patients (20%) with myelodysplastic syndromes, with particularly high frequency among patients whose disease was characterized by ring sideroblasts (53 of 82 [65%]). The gene was also mutated in 1 to 5% of patients with a variety of other tumor types. The observed mutations were less deleterious than was expected on the basis of chance, suggesting that the mutated protein retains structural integrity with altered function. SF3B1 mutations were associated with down-regulation of key gene networks, including core mitochondrial pathways. Clinically, patients with SF3B1 mutations had fewer cytopenias and longer event-free survival than patients without SF3B1 mutations. CONCLUSIONS: Mutations in SF3B1 implicate abnormalities of messenger RNA splicing in the pathogenesis of myelodysplastic syndromes. (Funded by the Wellcome Trust and others.).
Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes.
Normal human erythroid cell maturation requests the transcription factor GATA-1 and a transient activation of caspase-3, with GATA-1 being protected from caspase-3-mediated cleavage by interaction with the chaperone heat shock protein 70 (Hsp70) in the nucleus. Erythroid cell dysplasia observed in early myelodysplastic syndromes (MDS) involves impairment of differentiation and excess of apoptosis with a burst of caspase activation. Analysis of gene expression in MDS erythroblasts obtained by ex vivo cultures demonstrates the down-regulation of a set of GATA-1 transcriptional target genes, including GYPA that encodes glycophorin A (GPA), and the up-regulation of members of the HSP70 family. GATA-1 protein expression is decreased in MDS erythroblasts, but restores in the presence of a pan-caspase inhibitor. Expression of a mutated GATA-1 that cannot be cleaved by caspase-3 rescues the transcription of GATA-1 targets, and the erythroid differentiation, but does not improve survival. Hsp70 fails to protect GATA-1 from caspases because the protein does not accumulate in the nucleus with active caspase-3. Expression of a nucleus-targeted mutant of Hsp70 protects GATA-1 and rescues MDS erythroid cell differentiation. Alteration of Hsp70 cytosolic-nuclear shuttling is a major feature of MDS that favors GATA-1 cleavage and differentiation impairment, but not apoptosis, in dysplastic erythroblasts.
Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes.
Cancer is a genetic disease, but two patients rarely have identical genotypes. Similarly, patients differ in their clinicopathological parameters, but how genotypic and phenotypic heterogeneity are interconnected is not well understood. Here we build statistical models to disentangle the effect of 12 recurrently mutated genes and 4 cytogenetic alterations on gene expression, diagnostic clinical variables and outcome in 124 patients with myelodysplastic syndromes. Overall, one or more genetic lesions correlate with expression levels of ~20% of all genes, explaining 20-65% of observed expression variability. Differential expression patterns vary between mutations and reflect the underlying biology, such as aberrant polycomb repression for ASXL1 and EZH2 mutations or perturbed gene dosage for copy-number changes. In predicting survival, genomic, transcriptomic and diagnostic clinical variables all have utility, with the largest contribution from the transcriptome. Similar observations are made on the TCGA acute myeloid leukaemia cohort, confirming the general trends reported here.
Distinct factors determine the kinetics of disease relapse in adults transplanted for acute myeloid leukaemia.
BACKGROUND: Disease recurrence remains the major cause of death in adults with acute myeloid leukaemia (AML) treated using either intensive chemotherapy (IC) or allogenic stem cell transplantation (allo-SCT). AIMS: The timely delivery of maintenance drug or cellular therapies represent emerging strategies with the potential to reduce relapse after both treatment modalities, but whilst the determinants of overall relapse risk have been extensively characterized the factors determining the timing of disease recurrence have not been characterized. MATERIALS AND METHODS: We have therefore examined, using a series of sequential landmark analyses, relapse kinetics in a cohort of 2028 patients who received an allo-SCT for AML in CR1 and separately 570 patients treated with IC alone. RESULTS: In the first 3 months after allo-SCT, the factors associated with an increased risk of relapse included the presence of the FLT3-ITD (P
Molecular targeting of cancer stem cells.
Cancer stem cells may be important targets for new anticancer drugs. In two recent articles in Cell Stem Cell, Jin et al. (2009) and Hoey et al. (2009) provide proof of principle for this idea in experimental models of solid tumors and leukemias, respectively.
Color Atlas of Clinical Hematology
If the next edition is published less than one year after your purchase, you will beentitled to online access for one year from your date of purchase.
GATA-1 forms distinct activating and repressive complexes in erythroid cells.
GATA-1 is essential for the generation of the erythroid, megakaryocytic, eosinophilic and mast cell lineages. It acts as an activator and repressor of different target genes, for example, in erythroid cells it represses cell proliferation and early hematopoietic genes while activating erythroid genes, yet it is not clear how both of these functions are mediated. Using a biotinylation tagging/proteomics approach in erythroid cells, we describe distinct GATA-1 interactions with the essential hematopoietic factor Gfi-1b, the repressive MeCP1 complex and the chromatin remodeling ACF/WCRF complex, in addition to the known GATA-1/FOG-1 and GATA-1/TAL-1 complexes. Importantly, we show that FOG-1 mediates GATA-1 interactions with the MeCP1 complex, thus providing an explanation for the overlapping functions of these two factors in erythropoiesis. We also show that subsets of GATA-1 gene targets are bound in vivo by distinct complexes, thus linking specific GATA-1 partners to distinct aspects of its functions. Based on these findings, we suggest a model for the different roles of GATA-1 in erythroid differentiation.
Inositol polyphosphate 4-phosphatase type I regulates cell growth downstream of transcription factor GATA-1.
Megakaryocytes lacking transcription factor GATA-1 fail to complete maturation in vivo and hyperproliferate. To define how GATA-1 regulates megakaryocyte cell growth we searched for mRNA transcripts expressed in primary wild-type, but not GATA-1(-), megakaryocytes. One differentially expressed transcript encodes inositol polyphosphate 4-phosphatase type I (4-Ptase I). This enzyme hydrolyses phosphatidylinositol 3,4-bisphosphate and also has lesser activity against soluble analogues of this lipid, inositol 3, 4-bisphosphate and inositol 1,3,4-triphosphate. Reintroduction of 4-Ptase I into both primary GATA-1(-) and wild-type megakaryocytes significantly retards cell growth, suggesting that absence of 4-Ptase I may contribute to the hyperproliferative phenotype of GATA-1(-) megakaryocytes. Overexpression of 4-Ptase I also markedly reduces growth of NIH 3T3 fibroblasts. Taken together, these data indicate that 4-Ptase I is a regulator of cell proliferation.
Comparison of a restrictive versus liberal red cell transfusion policy for patients with myelodysplasia, aplastic anaemia, and other congenital bone marrow failure disorders.
BACKGROUND: Bone marrow failure disorders include a heterogenous group of disorders, of which myelodysplastic syndrome (MDS), forms the largest subgroup. MDS is predominantly a disease of the elderly, with many elderly people managed conservatively with regular allogeneic red blood cell (RBC) transfusions to treat their anaemia. However, RBC transfusions are not without risk. Despite regular transfusions playing a central role in treating such patients, the optimal RBC transfusion strategy (restrictive versus liberal) is currently unclear. OBJECTIVES: To assess the efficacy and safety of a restrictive versus liberal red blood cell transfusion strategy for patients with myelodysplasia, acquired aplastic anaemia, and other inherited bone marrow failure disorders. SEARCH METHODS: We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 4), Ovid MEDLINE (from 1946), Ovid EMBASE (from 1974), EBSCO CINAHL (from 1937), the Transfusion Evidence Library (from 1980) and ongoing trial databases to 26th May 2015. SELECTION CRITERIA: RCTs including patients with long-term bone marrow failure disorders that require allogeneic blood transfusion, who are not being actively treated with a haematopoietic stem cell transplant, or intensive chemotherapy. DATA COLLECTION AND ANALYSIS: We used standard Cochrane review methodology. One author initially screened all references, and excluded any that were clearly irrelevant or duplicates. Two authors then independently screened all abstracts of articles, identified by the review search strategy, for relevancy. Two authors independently assessed the full text of all potentially relevant articles for eligibility, completed the data extraction and assessed the studies for risk of bias using The Cochrane Collaboration's 'Risk of bias' tool. MAIN RESULTS: We included one trial (13 participants) and identified three ongoing trials that assess RBC transfusion strategies in people with MDS.The quality of the evidence was very low across different outcomes according to GRADE methodology.The one included study randomised participants to a restrictive [haemoglobin (Hb) transfusion trigger < 72 g/L, 8 participants] or liberal [Hb trigger < 96 g/L, 5 participants] transfusion policy. There was insufficient evidence to determine a difference in all-cause mortality (1 RCT; 13 participants; RR 0.13, 95% CI 0.01 to 2.32; very low quality evidence). There was insufficient evidence to determine a difference in the number of red blood cell transfusions (1 RCT; 13 participants; 1.8 units per patient per month in the liberal group, compared to 0.8 in the restrictive arm, no standard deviation was reported; very low quality evidence). There were no anaemia-related complications reported (cardiac failure) and no reported effect on activity levels (no statistics provided). The study did not report: mortality due to bleeding/infection/transfusion reactions or iron overload, quality of life, frequency and length of hospital admissions, serious infections (requiring admission to hospital), or serious bleeding (e.g. WHO/CTCAE grade 3 (or equivalent) or above). AUTHORS' CONCLUSIONS: This review indicates that there is currently a lack of evidence for the recommendation of a particular transfusion strategy for bone marrow failure patients undergoing supportive treatment only. The one RCT included in this review was only published as an abstract and contained only 13 participants. Further randomised trials with robust methodology are required to develop the optimal transfusion strategy for such patients, particularly as the incidence of the main group of bone marrow failure disorders, MDS, rises with an ageing population.
Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML).
Strategies that augment a GVL effect without increasing the risk of GVHD are required to improve the outcome after allogeneic stem cell transplantation (SCT). Azacitidine (AZA) up-regulates the expression of tumor Ags on leukemic blasts in vitro and expands the numbers of immunomodulatory T regulatory cells (Tregs) in animal models. Reasoning that AZA might selectively augment a GVL effect, we studied the immunologic sequelae of AZA administration after allogeneic SCT. Twenty-seven patients who had undergone a reduced intensity allogeneic transplantation for acute myeloid leukemia were treated with monthly courses of AZA, and CD8(+) T-cell responses to candidate tumor Ags and circulating Tregs were measured. AZA after transplantation was well tolerated, and its administration was associated with a low incidence of GVHD. Administration of AZA increased the number of Tregs within the first 3 months after transplantation compared with a control population (P = .0127). AZA administration also induced a cytotoxic CD8(+) T-cell response to several tumor Ags, including melanoma-associated Ag 1, B melanoma antigen 1, and Wilm tumor Ag 1. These data support the further examination of AZA after transplantation as a mechanism of augmenting a GVL effect without a concomitant increase in GVHD.
Assessment of Minimal Residual Disease in Standard-Risk AML.
BACKGROUND: Despite the molecular heterogeneity of standard-risk acute myeloid leukemia (AML), treatment decisions are based on a limited number of molecular genetic markers and morphology-based assessment of remission. Sensitive detection of a leukemia-specific marker (e.g., a mutation in the gene encoding nucleophosmin [NPM1]) could improve prognostication by identifying submicroscopic disease during remission. METHODS: We used a reverse-transcriptase quantitative polymerase-chain-reaction assay to detect minimal residual disease in 2569 samples obtained from 346 patients with NPM1-mutated AML who had undergone intensive treatment in the National Cancer Research Institute AML17 trial. We used a custom 51-gene panel to perform targeted sequencing of 223 samples obtained at the time of diagnosis and 49 samples obtained at the time of relapse. Mutations associated with preleukemic clones were tracked by means of digital polymerase chain reaction. RESULTS: Molecular profiling highlighted the complexity of NPM1-mutated AML, with segregation of patients into more than 150 subgroups, thus precluding reliable outcome prediction. The determination of minimal-residual-disease status was more informative. Persistence of NPM1-mutated transcripts in blood was present in 15% of the patients after the second chemotherapy cycle and was associated with a greater risk of relapse after 3 years of follow-up than was an absence of such transcripts (82% vs. 30%; hazard ratio, 4.80; 95% confidence interval [CI], 2.95 to 7.80; P<0.001) and a lower rate of survival (24% vs. 75%; hazard ratio for death, 4.38; 95% CI, 2.57 to 7.47; P<0.001). The presence of minimal residual disease was the only independent prognostic factor for death in multivariate analysis (hazard ratio, 4.84; 95% CI, 2.57 to 9.15; P<0.001). These results were validated in an independent cohort. On sequential monitoring of minimal residual disease, relapse was reliably predicted by a rising level of NPM1-mutated transcripts. Although mutations associated with preleukemic clones remained detectable during ongoing remission after chemotherapy, NPM1 mutations were detected in 69 of 70 patients at the time of relapse and provided a better marker of disease status. CONCLUSIONS: The presence of minimal residual disease, as determined by quantitation of NPM1-mutated transcripts, provided powerful prognostic information independent of other risk factors. (Funded by Bloodwise and the National Institute for Health Research; Current Controlled Trials number, ISRCTN55675535.).
Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study.
The JAK1/JAK2 inhibitor ruxolitinib produced significant reductions in splenomegaly and symptomatic burden and improved survival in patients with myelofibrosis (MF), irrespective of their JAK2 mutation status, in 2 phase III studies against placebo (COMFORT-I) and best available therapy (COMFORT-II). We performed a comprehensive mutation analysis to evaluate the impact of 14 MF-associated mutations on clinical outcomes in 166 patients included in COMFORT-II. We found that responses in splenomegaly and symptoms, as well as the risk of developing ruxolitinib-associated anemia and thrombocytopenia, occurred at similar frequencies across different mutation profiles. Ruxolitinib improved survival independent of mutation profile and reduced the risk of death in patients harboring a set of prognostically detrimental mutations (ASXL1, EZH2, SRSF2, IDH1/2) with an hazard ratio of 0.57 (95% confidence interval: 0.30-1.08) vs best available therapy. These data indicate that clinical efficacy and survival improvement may occur across different molecular subsets of patients with MF treated with ruxolitinib.