Search results
Found 9666 matches for
Researchers from the WIMM kick off a week-long science extravaganza today at The Royal Society Summer Science Exhibition. The team will be exhibiting a unique blend of genetics and virtual reality on their stand, ‘DNA Origami: How do you fold a genome?’
HLA-DQA1*05 Carriage Associated With Development of Anti-Drug Antibodies to Infliximab and Adalimumab in Patients With Crohn's Disease.
BACKGROUND & AIMS: Anti-tumor necrosis factor (anti-TNF) therapies are the most widely used biologic drugs for treating immune-mediated diseases, but repeated administration can induce the formation of anti-drug antibodies. The ability to identify patients at increased risk for development of anti-drug antibodies would facilitate selection of therapy and use of preventative strategies. METHODS: We performed a genome-wide association study to identify variants associated with time to development of anti-drug antibodies in a discovery cohort of 1240 biologic-naïve patients with Crohn's disease starting infliximab or adalimumab therapy. Immunogenicity was defined as an anti-drug antibody titer ≥10 AU/mL using a drug-tolerant enzyme-linked immunosorbent assay. Significant association signals were confirmed in a replication cohort of 178 patients with inflammatory bowel disease. RESULTS: The HLA-DQA1*05 allele, carried by approximately 40% of Europeans, significantly increased the rate of immunogenicity (hazard ratio [HR], 1.90; 95% confidence interval [CI], 1.60-2.25; P = 5.88 × 10-13). The highest rates of immunogenicity, 92% at 1 year, were observed in patients treated with infliximab monotherapy who carried HLA-DQA1*05; conversely the lowest rates of immunogenicity, 10% at 1 year, were observed in patients treated with adalimumab combination therapy who did not carry HLA-DQA1*05. We confirmed this finding in the replication cohort (HR, 2.00; 95% CI, 1.35-2.98; P = 6.60 × 10-4). This association was consistent for patients treated with adalimumab (HR, 1.89; 95% CI, 1.32-2.70) or infliximab (HR, 1.92; 95% CI, 1.57-2.33), and for patients treated with anti-TNF therapy alone (HR, 1.75; 95% CI, 1.37-2.22) or in combination with an immunomodulator (HR, 2.01; 95% CI, 1.57-2.58). CONCLUSIONS: In an observational study, we found a genome-wide significant association between HLA-DQA1*05 and the development of antibodies against anti-TNF agents. A randomized controlled biomarker trial is required to determine whether pretreatment testing for HLA-DQA1*05 improves patient outcomes by helping physicians select anti-TNF and combination therapies. ClinicalTrials.gov ID: NCT03088449.
Becalming Type 17 Inflammation in Ulcerative Colitis.
Genome-wide association studies in ulcerative colitis point to a role for FcγRIIA, a receptor for IgG. Castro-Dopico et al. (2019) find a profound induction of anti-commensal IgG in the colonic mucosa of UC patients and outline a pathway whereby FcγR activation by IgG triggers IL-1β production, type 17 immunity, and the exacerbation of inflammation.
Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn's disease: a prospective, multicentre, cohort study.
BACKGROUND: Anti-TNF drugs are effective treatments for the management of Crohn's disease but treatment failure is common. We aimed to identify clinical and pharmacokinetic factors that predict primary non-response at week 14 after starting treatment, non-remission at week 54, and adverse events leading to drug withdrawal. METHODS: The personalised anti-TNF therapy in Crohn's disease study (PANTS) is a prospective observational UK-wide study. We enrolled anti-TNF-naive patients (aged ≥6 years) with active luminal Crohn's disease at the time of first exposure to infliximab or adalimumab between March 7, 2013, and July 15, 2016. Patients were evaluated for 12 months or until drug withdrawal. Demographic data, smoking status, age at diagnosis, disease duration, location, and behaviour, previous medical and drug history, and previous Crohn's disease-related surgeries were recorded at baseline. At every visit, disease activity score, weight, therapy, and adverse events were recorded; drug and total anti-drug antibody concentrations were also measured. Treatment failure endpoints were primary non-response at week 14, non-remission at week 54, and adverse events leading to drug withdrawal. We used regression analyses to identify which factors were associated with treatment failure. FINDINGS: We enrolled 955 patients treated with infliximab (753 with originator; 202 with biosimilar) and 655 treated with adalimumab. Primary non-response occurred in 295 (23·8%, 95% CI 21·4-26·2) of 1241 patients who were assessable at week 14. Non-remission at week 54 occurred in 764 (63·1%, 60·3-65·8) of 1211 patients who were assessable, and adverse events curtailed treatment in 126 (7·8%, 6·6-9·2) of 1610 patients. In multivariable analysis, the only factor independently associated with primary non-response was low drug concentration at week 14 (infliximab: odds ratio 0·35 [95% CI 0·20-0·62], p=0·00038; adalimumab: 0·13 [0·06-0·28], p<0·0001); the optimal week 14 drug concentrations associated with remission at both week 14 and week 54 were 7 mg/L for infliximab and 12 mg/L for adalimumab. Continuing standard dosing regimens after primary non-response was rarely helpful; only 14 (12·4% [95% CI 6·9-19·9]) of 113 patients entered remission by week 54. Similarly, week 14 drug concentration was also independently associated with non-remission at week 54 (0·29 [0·16-0·52] for infliximab; 0·03 [0·01-0·12] for adalimumab; p<0·0001 for both). The proportion of patients who developed anti-drug antibodies (immunogenicity) was 62·8% (95% CI 59·0-66·3) for infliximab and 28·5% (24·0-32·7) for adalimumab. For both drugs, suboptimal week 14 drug concentrations predicted immunogenicity, and the development of anti-drug antibodies predicted subsequent low drug concentrations. Combination immunomodulator (thiopurine or methotrexate) therapy mitigated the risk of developing anti-drug antibodies (hazard ratio 0·39 [95% CI 0·32-0·46] for infliximab; 0·44 [0·31-0·64] for adalimumab; p<0·0001 for both). For infliximab, multivariable analysis of immunododulator use, and week 14 drug and anti-drug antibody concentrations showed an independent effect of immunomodulator use on week 54 non-remission (odds ratio 0·56 [95% CI 0·38-0·83], p=0·004). INTERPRETATION: Anti-TNF treatment failure is common and is predicted by low drug concentrations, mediated in part by immunogenicity. Clinical trials are required to investigate whether personalised induction regimens and treatment-to-target dose intensification improve outcomes. FUNDING: Guts UK, Crohn's and Colitis UK, Cure Crohn's Colitis, AbbVie, Merck Sharp and Dohme, Napp Pharmaceuticals, Pfizer, and Celltrion.
GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis.
Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.
HLA-dependent variation in SARS-CoV-2 CD8+ T cell cross-reactivity with human coronaviruses
Pre-existing T cell immunity to SARS-CoV-2 in individuals without prior exposure to SARS-CoV-2 has been reported in several studies. While emerging evidence hints toward prior exposure to common-cold human coronaviruses (HCoV), the extent of- and conditions for-cross-protective immunity between SARS-CoV-2 and HCoVs remain open. Here, by leveraging a comprehensive pool of publicly available functionally evaluated SARS-CoV-2 peptides, we report 126 immunogenic SARS-CoV-2 peptides with high sequence similarity to 285 MHC-presented target peptides from at least one of four HCoV, thus providing a map describing the landscape of SARS-CoV-2 shared and private immunogenic peptides with functionally validated T cell responses. Using this map, we show that while SARS-CoV-2 immunogenic peptides in general exhibit higher level of dissimilarity to both self-proteome and -microbiomes, there exist several SARS-CoV-2 immunogenic peptides with high similarity to various human protein coding genes, some of which have been reported to have elevated expression in severe COVID-19 patients. We then combine our map with a SARS-CoV-2-specific TCR repertoire data from COVID-19 patients and healthy controls and show that whereas the public repertoire for the majority of convalescent patients are dominated by TCRs cognate to private SARS-CoV-2 peptides, for a subset of patients, more than 50% of their public repertoires that show reactivity to SARS-CoV-2, consist of TCRs cognate to shared SARS-CoV-2-HCoV peptides. Further analyses suggest that the skewed distribution of TCRs cognate to shared and private peptides in COVID-19 patients is likely to be HLA-dependent. Finally, by utilising the global prevalence of HLA alleles, we provide 10 peptides with known cognate TCRs that are conserved across SARS-CoV-2 and multiple human coronaviruses and are predicted to be recognised by a high proportion of the global population. Overall, our work indicates the potential for HCoV-SARS-CoV-2 reactive CD8 + T cells, which is likely dependent on differences in HLA-coding genes among individuals. These findings may have important implications for COVID-19 heterogeneity and vaccine-induced immune responses as well as robustness of immunity to SARS-CoV-2 and its variants.
Immune-epithelial-stromal networks define the cellular ecosystem of the small intestine in celiac disease.
The immune-epithelial-stromal interactions underpinning intestinal damage in celiac disease (CD) are incompletely understood. To address this, we performed single-cell transcriptomics (RNA sequencing; 86,442 immune, parenchymal and epithelial cells; 35 participants) and spatial transcriptomics (20 participants) on CD intestinal biopsy samples. Here we show that in CD, epithelial populations shifted toward a progenitor state, with interferon-driven transcriptional responses, and perturbation of secretory and enteroendocrine populations. Mucosal T cells showed numeric and functional changes in regulatory and follicular helper-like CD4+ T cells, intraepithelial lymphocytes, CD8+ and γδ T cell subsets, with skewed T cell antigen receptor repertoires. Mucosal changes remained detectable despite treatment, representing a persistent immune-epithelial 'scar'. Spatial transcriptomics defined transcriptional niches beyond those captured in conventional histological scores, including CD-specific lymphoid aggregates containing T cell-B cell interactions. Receptor-ligand spatial analyses integrated with disease susceptibility gene expression defined networks of altered chemokine and morphogen signaling, and provide potential therapeutic targets for CD prevention and treatment.
Single-cell atlas of colonic CD8+ T cells in ulcerative colitis.
Colonic antigen-experienced lymphocytes such as tissue-resident memory CD8+ T cells can respond rapidly to repeated antigen exposure. However, their cellular phenotypes and the mechanisms by which they drive immune regulation and inflammation remain unclear. Here we compiled an unbiased atlas of human colonic CD8+ T cells in health and ulcerative colitis (UC) using single-cell transcriptomics with T-cell receptor repertoire analysis and mass cytometry. We reveal extensive heterogeneity in CD8+ T-cell composition, including expanded effector and post-effector terminally differentiated CD8+ T cells. While UC-associated CD8+ effector T cells can trigger tissue destruction and produce tumor necrosis factor (TNF)-α, post-effector cells acquire innate signatures to adopt regulatory functions that may mitigate excessive inflammation. Thus, we identify colonic CD8+ T-cell phenotypes in health and UC, define their clonal relationships and characterize terminally differentiated dysfunctional UC CD8+ T cells expressing IL-26, which attenuate acute colitis in a humanized IL-26 transgenic mouse model.
Epithelial-derived gasdermin D mediates nonlytic IL-1β release during experimental colitis.
Gasdermin D (GSDMD) induces pyroptosis via the pore-forming activity of its N-terminal domain, cleaved by activated caspases associated with the release of IL-1β. Here, we report a nonpyroptotic role of full-length GSDMD in guiding the release of IL-1β-containing small extracellular vesicles (sEVs) from intestinal epithelial cells (IECs). In response to caspase-8 inflammasome activation, GSDMD, chaperoned by Cdc37/Hsp90, recruits the E3 ligase, NEDD4, to catalyze polyubiquitination of pro-IL-1β, serving as a signal for cargo loading into secretory vesicles. GSDMD and IL-1β colocalize with the exosome markers CD63 and ALIX intracellularly, and GSDMD and NEDD4 are required for release of CD63+ sEVs containing IL-1β, GSDMD, NEDD4, and caspase-8. Importantly, increased expression of epithelial-derived GSDMD is observed both in patients with inflammatory bowel disease (IBD) and those with experimental colitis. While GSDMD-dependent release of IL-1β-containing sEVs is detected in cultured colonic explants from colitic mice, GSDMD deficiency substantially attenuates disease severity, implicating GSDMD-mediated release of IL-1β sEVs in the pathogenesis of intestinal inflammation, such as that observed in IBD.
Dual RNA sequencing reveals dendritic cell reprogramming in response to typhoidal Salmonella invasion.
Salmonella enterica represent a major disease burden worldwide. S. enterica serovar Typhi (S. Typhi) is responsible for potentially life-threatening Typhoid fever affecting 10.9 million people annually. While non-typhoidal Salmonella (NTS) serovars usually trigger self-limiting diarrhoea, invasive NTS bacteraemia is a growing public health challenge. Dendritic cells (DCs) are key professional antigen presenting cells of the human immune system. The ability of pathogenic bacteria to subvert DC functions and prevent T cell recognition contributes to their survival and dissemination within the host. Here, we adapted dual RNA-sequencing to define how different Salmonella pathovariants remodel their gene expression in tandem with that of infected DCs. We find DCs harness iron handling pathways to defend against invading Salmonellas, which S. Typhi is able to circumvent by mounting a robust response to nitrosative stress. In parallel, we uncover the alternative strategies invasive NTS employ to impair DC functions.
NOD2 and TLR2 Signal via TBK1 and PI31 to Direct Cross-Presentation and CD8 T Cell Responses.
NOD2 and TLR2 recognize components of bacterial cell wall peptidoglycan and direct defense against enteric pathogens. CD8+ T cells are important for immunity to such pathogens but how NOD2 and TLR2 induce antigen specific CD8+ T cell responses is unknown. Here, we define how these pattern recognition receptors (PRRs) signal in primary dendritic cells (DCs) to influence MHC class I antigen presentation. We show NOD2 and TLR2 phosphorylate PI31 via TBK1 following activation in DCs. PI31 interacts with TBK1 and Sec16A at endoplasmic reticulum exit sites (ERES), which positively regulates MHC class I peptide loading and immunoproteasome stability. Following NOD2 and TLR2 stimulation, depletion of PI31 or inhibition of TBK1 activity in vivo impairs DC cross-presentation and CD8+ T cell activation. DCs from Crohn's patients expressing NOD2 polymorphisms show dysregulated cross-presentation and CD8+ T cell responses. Our findings reveal unidentified mechanisms that underlie CD8+ T cell responses to bacteria in health and in Crohn's.
Intracellular immunization against HIV infection with an intracellular antibody that mimics HIV integrase binding to the cellular LEDGF protein.
Preventing the protein-protein interaction of the cellular chromatin binding protein Lens Epithelium-Derived Growth Factor (LEDGF) and human immunodeficiency virus (HIV) integrase is an important possible strategy for anti-viral treatment for AIDS. We have used Intracellular Antibody Capture technology to isolate a single VH antibody domain that binds to LEDGF. The crystal structure of the LEDGF-VH complex reveals that the single domain antibody mimics the effect of binding of HIV integrase to LEDGF which is crucial for HIV propagation. CD4-expressing T cell lines were constructed to constitutively express the LEDGF-binding VH and these cells showed interference with HIV viral replication, assayed by virus capsid protein p24 production. Therefore, pre-conditioning cells to express antibody fragments confers effective intracellular immunization for preventing chronic viral replication and can be a way to prevent HIV spread in infected patients. This raises the prospect that intracellular immunization strategies that focus on cellular components of viral integrase protein interactions can be used to combat the problems associated with latent HIV virus re-emergence in patients. New genome editing development, such as using CRISPR/cas9, offer the prospect intracellularly immunized T cells in HIV+ patients.
Interferon-Gamma-Producing CD8+ Tissue Resident Memory T Cells Are a Targetable Hallmark of Immune Checkpoint Inhibitor-Colitis.
BACKGROUND & AIMS: The pathogenesis of immune checkpoint inhibitor (ICI)-colitis remains incompletely understood. We sought to identify key cellular drivers of ICI-colitis and their similarities to idiopathic ulcerative colitis, and to determine potential novel therapeutic targets. METHODS: We used a cross-sectional approach to study patients with ICI-colitis, those receiving ICI without the development of colitis, idiopathic ulcerative colitis, and healthy controls. A subset of patients with ICI-colitis were studied longitudinally. We applied a range of methods, including multiparameter and spectral flow cytometry, spectral immunofluorescence microscopy, targeted gene panels, and bulk and single-cell RNA sequencing. RESULTS: We demonstrate CD8+ tissue resident memory T (TRM) cells are the dominant activated T cell subset in ICI-colitis. The pattern of gastrointestinal immunopathology is distinct from ulcerative colitis at both the immune and epithelial-signaling levels. CD8+ TRM cell activation correlates with clinical and endoscopic ICI-colitis severity. Single-cell RNA sequencing analysis confirms activated CD8+ TRM cells express high levels of transcripts for checkpoint inhibitors and interferon-gamma in ICI-colitis. We demonstrate similar findings in both anti-CTLA-4/PD-1 combination therapy and in anti-PD-1 inhibitor-associated colitis. On the basis of our data, we successfully targeted this pathway in a patient with refractory ICI-colitis, using the JAK inhibitor tofacitinib. CONCLUSIONS: Interferon gamma-producing CD8+ TRM cells are a pathological hallmark of ICI-colitis and a novel target for therapy.
Pathogenesis of Fistulating Crohn's Disease: A Review.
Sustained, transmural inflammation of the bowel wall may result in the development of a fistula in Crohn's disease (CD). Fistula formation is a recognized complication and cause of morbidity, occurring in 40% of patients with CD. Despite advanced treatment, one-third of patients experience recurrent fistulae. Development of targeting treatment for fistulae will be dependent on a more in depth understanding of its pathogenesis. Presently, pathogenesis of CD-associated fistulae remains poorly defined, in part due to the lack of accepted in vitro tissue models recapitulating the pathogenic cellular lesions linked to fistulae and limited in vivo models. This review provides a synthesis of the existing knowledge of the histopathological, immune, cellular, genetic, and microbial contributions to the pathogenesis of CD-associated fistulae including the widely accredited contribution of epithelial-to-mesenchymal transition, upregulation of matrix metalloproteinases, and overexpression of invasive molecules, resulting in tissue remodeling and subsequent fistula formation. We conclude by exploring how we might utilize advancing technologies to verify and broaden our current understanding while exploring novel causal pathways to provide further inroads to future therapeutic targets.
CD161 Defines a Functionally Distinct Subset of Pro-Inflammatory Natural Killer Cells.
CD161 is a C-type lectin-like receptor expressed on the majority of natural killer (NK) cells; however, the significance of CD161 expression on NK cells has not been comprehensively investigated. Recently, we found that CD161 expression identifies a transcriptional and innate functional phenotype that is shared across various T cell populations. Using mass cytometry and microarray experiments, we demonstrate that this functional phenotype extends to NK cells. CD161 marks NK cells that have retained the ability to respond to innate cytokines during their differentiation, and is lost upon cytomegalovirus-induced maturation in both healthy and human immunodeficiency virus (HIV)-infected patients. These pro-inflammatory NK cells are present in the inflamed lamina propria where they are enriched for integrin CD103 expression. Thus, CD161 expression identifies NK cells that may contribute to inflammatory disease pathogenesis and correlates with an innate responsiveness to cytokines in both T and NK cells.