Search results
Found 9683 matches for
Evaluation of a novel malaria anti-sporozoite vaccine candidate, R21 in Matrix-M adjuvant, in the UK and Burkina Faso: two phase 1, first-in-human trials.
BACKGROUND: Malaria remains a substantial public health burden among young children in sub-Saharan Africa and a highly efficacious vaccine eliciting a durable immune response would be a useful tool for controlling malaria. R21 is a malaria vaccine comprising nanoparticles, formed from a circumsporozoite protein and hepatitis B surface antigen (HBsAg) fusion protein, without any unfused HBsAg, and is administered with the saponin-based Matrix-M adjuvant. This study aimed to assess the safety and immunogenicity of the malaria vaccine candidate, R21, administered with or without adjuvant Matrix-M in adults naïve to malaria infection and in healthy adults from malaria endemic areas. METHODS: In this Article we report two phase 1, first-in-human trials. The first trial was a phase 1a open-label study in the UK evaluating the safety and immunogenicity of R21 administered either alone, or with 50 μg of Matrix-M. The second trial was a phase 1b randomised controlled trial in Burkina Faso. Adults had to be aged 18-50 years for enrolment in the phase 1a trial, and 18-45 years in the phase 1b trial. The phase 1a trial doses were 2 μg, 10 μg, and 50 μg R21/Matrix-M, and 50 μg R21 only. The phase 1b trial doses were 10 μg R21/Matrix-M and saline placebo. Matrix-M was always dosed at 50 μg. Phase 1b implemented block randomisation by randomisation into study groups by an independent statistician based at the University of Oxford using a randomisation code list with allocation concealment using opaque sealed envelopes. The primary objective of the phase 1a trial was to assess the safety and tolerability of R21 with and without Matrix-M. The primary objective of the phase 1b trial was to assess the safety and tolerability of R21 with Matrix-M. Both trials are registered with ClinicalTrials.gov, NCT02572388 for phase 1a and NCT02925403 for phase 1b, and are completed. FINDINGS: Between Oct 1, 2015, and Jan 3, 2017, 31 individuals were enrolled in the phase 1a study. Six individuals were assigned to receive 2 μg R21/Matrix-M, 11 to 10 μg R21/Matrix-M, ten to 50 μg R21/Matrix-M, and four to 50 μg R21 only. Between Aug 26, 2016, and Sept 28, 2017, 13 individuals were enrolled in the phase 1b study. Eight individuals were assigned to receive 10 μg R21/Matrix-M, and five to placebo. Vaccinations were well tolerated, and most local and systemic adverse events were mild. There were no serious adverse events deemed related to vaccination. Two serious adverse events occurred. The first in the 10 μg R21/Matrix-M group was worsening of previously undisclosed or undiagnosed palindromic rheumatism and was deemed unlikely to be related to vaccination and the second in the 2 μg R21/Matrix-M was hospital admission for an unplanned excision of a pre-existing Bartholin's cyst, also unrelated to vaccination. In the phase 1a study, a total of 21 adverse events were recorded in the 2 μg R21/Matrix-M group, 103 in the 10 μg R21/Matrix-M group, 94 in the 50 μg R21/Matrix-M group, and 21 in the 50 μg R21 alone group. In the phase 1b study, twelve adverse events were recorded in the 10 μg R21/Matrix-M group and 0 in the placebo group. INTERPRETATION: R21 with Matrix-M adjuvant has an acceptable safety profile. These data have formed the basis for efficacy testing of this vaccine. FUNDING: The European Commission Framework 7 and The European & Developing Countries Clinical Trials Partnership.
Subcutaneous administration of the malaria R21/Matrix M vaccine and immune complex formation with anti-circumsporozoite protein mAb 2A10 elicit protective efficacy in mice
IntroductionR21, the most efficacious malaria vaccine to date, has been recommended by the World Health Organization (WHO) for the prevention of malaria in children. The current vaccination schedule requires three intramuscular doses per year. Optimizing vaccine administration strategies, including exploring alternative routes of immunization and novel vaccine formulations, has the potential to reduce the number of required doses to achieve high efficacy. Immune complexes (ICs), formed by combining antigens with their cognate antibodies, have been successfully employed in licensed poultry vaccines for viral diseases and are showing promise in preclinical studies for human viral vaccines. Co-delivery of antigen with immune complexes has been reported to enhance antibody titers in preclinical models.MethodsHere, we present the first report of the immunogenicity and short- term high protective efficacy of R21/Matrix-M administered via the subcutaneous (SC) route, as well as in a modified formulation as an immune complex (IC) (R21: anti-NANP mAb 2A10) with only two immunizations. We also evaluated co-administration of R21 with pre-formed ICs.ResultsR21/MM administered via the SC route is immunogenic and more efficacious (100% in BALB/c mice) than the IM route. R21:2A10 IC/MM is immunogenic and induces sterile protection in BALB/c mice. Co-administration of R21/MM with R21:2A10 IC is immunogenic but less protective than IC/MM alone in BALB/c mice.ConclusionWhile IC-based vaccination strategies have primarily been explored for viral diseases, this study represents the first application of this approach to a parasitic disease. Our findings provide new insights into the potential of alternative vaccine delivery strategies and immune complex platforms for improving malaria vaccination outcomes.
Emulsion and liposome-based adjuvanted R21 vaccine formulations mediate protection against malaria through distinct immune mechanisms.
Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.
Production of a high purity, C-tagged hepatitis B surface antigen fusion protein VLP vaccine for malaria expressed in Pichia pastoris under cGMP conditions.
Virus-like particles (VLPs) induce strong humoral and cellular responses and have formed the basis of some currently licensed vaccines. Here, we present the method used for the production of R21, a VLP-based anti-sporozoite malaria vaccine, under current Clinical Good Manufacturing Practice regulations (cGMP). Previous preclinical studies in BALB/c mice showed that R21 produced almost complete protection against sporozoite challenge with transgenic Plasmodium berghei parasites. Here, we have modified the preclinical production process to enable the production of sufficient quantities of highly pure, clinical-grade material for use in human clinical trials. The R21 construct was re-engineered to include a C-tag to allow affinity-based separation from the major contaminant alcohol oxidase 1 (AOX 1, ~74 kDa). To our knowledge, this is the first use of C-tag technology to purify a VLP vaccine candidate for use in human clinical trials. The R21 vaccine has shown high-level efficacy in an African Phase IIb trial, and multiple clinical trials are underway to assess the safety and efficacy of the vaccine. Our findings support the future use of C-tag platform technologies to enable cGMP-compliant biomanufacturing of high purity yeast-expressed VLP-based vaccines for early phase clinical trials when clinical grade material is required in smaller quantities in a quick time frame.
Virus-like particle vaccines
Vaccines are among the most successful and cost-effective public health tools for preventing infectious diseases and death. Virus-like particles (VLPs) have made impressive progress in the field of vaccinology over the last three decades so that several VLP-based vaccines are commercially available and generating great public health impact, for example, the hepatitis B virus and the human papillomavirus (HPV) vaccines or in advanced clinical trials such as the RTS,S and R21 VLP malaria vaccines. We have growing in-house experience in Oxford of the use of a wide range of VLPs to target malaria and other diseases by vaccination. As VLPs lack genetic material, they have no replication capacity and are considered very safe. Additionally, VLP-based vaccines have significant ability to induce both innate and adaptive immune responses as well as being safe templates with favorable low-cost and large-scale manufacturing available.
Screening of viral-vectored P. falciparum pre-erythrocytic candidate vaccine antigens using chimeric rodent parasites.
To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.
Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial.
BACKGROUND: Older adults (aged ≥70 years) are at increased risk of severe disease and death if they develop COVID-19 and are therefore a priority for immunisation should an efficacious vaccine be developed. Immunogenicity of vaccines is often worse in older adults as a result of immunosenescence. We have reported the immunogenicity of a novel chimpanzee adenovirus-vectored vaccine, ChAdOx1 nCoV-19 (AZD1222), in young adults, and now describe the safety and immunogenicity of this vaccine in a wider range of participants, including adults aged 70 years and older. METHODS: In this report of the phase 2 component of a single-blind, randomised, controlled, phase 2/3 trial (COV002), healthy adults aged 18 years and older were enrolled at two UK clinical research facilities, in an age-escalation manner, into 18-55 years, 56-69 years, and 70 years and older immunogenicity subgroups. Participants were eligible if they did not have severe or uncontrolled medical comorbidities or a high frailty score (if aged ≥65 years). First, participants were recruited to a low-dose cohort, and within each age group, participants were randomly assigned to receive either intramuscular ChAdOx1 nCoV-19 (2·2 × 1010 virus particles) or a control vaccine, MenACWY, using block randomisation and stratified by age and dose group and study site, using the following ratios: in the 18-55 years group, 1:1 to either two doses of ChAdOx1 nCoV-19 or two doses of MenACWY; in the 56-69 years group, 3:1:3:1 to one dose of ChAdOx1 nCoV-19, one dose of MenACWY, two doses of ChAdOx1 nCoV-19, or two doses of MenACWY; and in the 70 years and older, 5:1:5:1 to one dose of ChAdOx1 nCoV-19, one dose of MenACWY, two doses of ChAdOx1 nCoV-19, or two doses of MenACWY. Prime-booster regimens were given 28 days apart. Participants were then recruited to the standard-dose cohort (3·5-6·5 × 1010 virus particles of ChAdOx1 nCoV-19) and the same randomisation procedures were followed, except the 18-55 years group was assigned in a 5:1 ratio to two doses of ChAdOx1 nCoV-19 or two doses of MenACWY. Participants and investigators, but not staff administering the vaccine, were masked to vaccine allocation. The specific objectives of this report were to assess the safety and humoral and cellular immunogenicity of a single-dose and two-dose schedule in adults older than 55 years. Humoral responses at baseline and after each vaccination until 1 year after the booster were assessed using an in-house standardised ELISA, a multiplex immunoassay, and a live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) microneutralisation assay (MNA80). Cellular responses were assessed using an ex-vivo IFN-γ enzyme-linked immunospot assay. The coprimary outcomes of the trial were efficacy, as measured by the number of cases of symptomatic, virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were by group allocation in participants who received the vaccine. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. This study is ongoing and is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137. FINDINGS: Between May 30 and Aug 8, 2020, 560 participants were enrolled: 160 aged 18-55 years (100 assigned to ChAdOx1 nCoV-19, 60 assigned to MenACWY), 160 aged 56-69 years (120 assigned to ChAdOx1 nCoV-19: 40 assigned to MenACWY), and 240 aged 70 years and older (200 assigned to ChAdOx1 nCoV-19: 40 assigned to MenACWY). Seven participants did not receive the boost dose of their assigned two-dose regimen, one participant received the incorrect vaccine, and three were excluded from immunogenicity analyses due to incorrectly labelled samples. 280 (50%) of 552 analysable participants were female. Local and systemic reactions were more common in participants given ChAdOx1 nCoV-19 than in those given the control vaccine, and similar in nature to those previously reported (injection-site pain, feeling feverish, muscle ache, headache), but were less common in older adults (aged ≥56 years) than younger adults. In those receiving two standard doses of ChAdOx1 nCoV-19, after the prime vaccination local reactions were reported in 43 (88%) of 49 participants in the 18-55 years group, 22 (73%) of 30 in the 56-69 years group, and 30 (61%) of 49 in the 70 years and older group, and systemic reactions in 42 (86%) participants in the 18-55 years group, 23 (77%) in the 56-69 years group, and 32 (65%) in the 70 years and older group. As of Oct 26, 2020, 13 serious adverse events occurred during the study period, none of which were considered to be related to either study vaccine. In participants who received two doses of vaccine, median anti-spike SARS-CoV-2 IgG responses 28 days after the boost dose were similar across the three age cohorts (standard-dose groups: 18-55 years, 20 713 arbitrary units [AU]/mL [IQR 13 898-33 550], n=39; 56-69 years, 16 170 AU/mL [10 233-40 353], n=26; and ≥70 years 17 561 AU/mL [9705-37 796], n=47; p=0·68). Neutralising antibody titres after a boost dose were similar across all age groups (median MNA80 at day 42 in the standard-dose groups: 18-55 years, 193 [IQR 113-238], n=39; 56-69 years, 144 [119-347], n=20; and ≥70 years, 161 [73-323], n=47; p=0·40). By 14 days after the boost dose, 208 (>99%) of 209 boosted participants had neutralising antibody responses. T-cell responses peaked at day 14 after a single standard dose of ChAdOx1 nCoV-19 (18-55 years: median 1187 spot-forming cells [SFCs] per million peripheral blood mononuclear cells [IQR 841-2428], n=24; 56-69 years: 797 SFCs [383-1817], n=29; and ≥70 years: 977 SFCs [458-1914], n=48). INTERPRETATION: ChAdOx1 nCoV-19 appears to be better tolerated in older adults than in younger adults and has similar immunogenicity across all age groups after a boost dose. Further assessment of the efficacy of this vaccine is warranted in all age groups and individuals with comorbidities. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midlands NIHR Clinical Research Network, and AstraZeneca.
Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial.
BACKGROUND: Stalled progress in controlling Plasmodium falciparum malaria highlights the need for an effective and deployable vaccine. RTS,S/AS01, the most effective malaria vaccine candidate to date, demonstrated 56% efficacy over 12 months in African children. We therefore assessed a new candidate vaccine for safety and efficacy. METHODS: In this double-blind, randomised, controlled, phase 2b trial, the low-dose circumsporozoite protein-based vaccine R21, with two different doses of adjuvant Matrix-M (MM), was given to children aged 5-17 months in Nanoro, Burkina Faso-a highly seasonal malaria transmission setting. Three vaccinations were administered at 4-week intervals before the malaria season, with a fourth dose 1 year later. All vaccines were administered intramuscularly into the thigh. Group 1 received 5 μg R21 plus 25 μg MM, group 2 received 5 μg R21 plus 50 μg MM, and group 3, the control group, received rabies vaccinations. Children were randomly assigned (1:1:1) to groups 1-3. An independent statistician generated a random allocation list, using block randomisation with variable block sizes, which was used to assign participants. Participants, their families, and the local study team were all masked to group allocation. Only the pharmacists preparing the vaccine were unmasked to group allocation. Vaccine safety, immunogenicity, and efficacy were evaluated over 1 year. The primary objective assessed protective efficacy of R21 plus MM (R21/MM) from 14 days after the third vaccination to 6 months. Primary analyses of vaccine efficacy were based on a modified intention-to-treat population, which included all participants who received three vaccinations, allowing for inclusion of participants who received the wrong vaccine at any timepoint. This trial is registered with ClinicalTrials.gov, NCT03896724. FINDINGS: From May 7 to June 13, 2019, 498 children aged 5-17 months were screened, and 48 were excluded. 450 children were enrolled and received at least one vaccination. 150 children were allocated to group 1, 150 children were allocated to group 2, and 150 children were allocated to group 3. The final vaccination of the primary series was administered on Aug 7, 2019. R21/MM had a favourable safety profile and was well tolerated. The majority of adverse events were mild, with the most common event being fever. None of the seven serious adverse events were attributed to the vaccine. At the 6-month primary efficacy analysis, 43 (29%) of 146 participants in group 1, 38 (26%) of 146 participants in group 2, and 105 (71%) of 147 participants in group 3 developed clinical malaria. Vaccine efficacy was 74% (95% CI 63-82) in group 1 and 77% (67-84) in group 2 at 6 months. At 1 year, vaccine efficacy remained high, at 77% (67-84) in group 1. Participants vaccinated with R21/MM showed high titres of malaria-specific anti-Asn-Ala-Asn-Pro (NANP) antibodies 28 days after the third vaccination, which were almost doubled with the higher adjuvant dose. Titres waned but were boosted to levels similar to peak titres after the primary series of vaccinations after a fourth dose administered 1 year later. INTERPRETATION: R21/MM appears safe and very immunogenic in African children, and shows promising high-level efficacy. FUNDING: The European & Developing Countries Clinical Trials Partnership, Wellcome Trust, and National Institute for Health Research Oxford Biomedical Research Centre.
Phase I assessments of first-in-human administration of a novel malaria anti-sporozoite vaccine candidate, R21 in matrix-M adjuvant, in UK and Burkinabe volunteers
ABSTRACT Background Improvements in malaria control have stalled recently and new tools are needed. The R21 vaccine is comprised of the malaria circumsporozoite protein fused to hepatitis B surface antigen (HBsAg). It forms particles that lack the excess HBsAg in the frequently tested malaria vaccine candidate, RTS,S/AS01 B . Methods We conducted an open-label, first-in-human, Phase Ia study evaluating safety and immunogenicity of R21 administered alone and with the saponin-based adjuvant, Matrix-M ™ (MM). Twenty-eight healthy adults received three doses of R21 given intramuscularly 4 weeks apart. We subsequently conducted a Phase Ib randomised, controlled trial in West African adults. Findings Vaccinations were well tolerated, and the majority of local and systemic adverse events were mild. Reactogenicity was significantly lower in Burkinabe than UK vaccinees (p<0.0001). Antibody responses increased significantly 28 days after the 2 nd vaccination in UK volunteers. Antibody responses to R21 in all dose groups (2μg, 10μg and 50μg) were comparable to those of 50μg RTS,S/AS01 B in malaria-naïve adults at 28 days after final vaccination. The 10μg dose induced more durable responses, with 2-fold higher NANP-specific IgG titres at 6 months compared with the 2μg and 50μg dose groups. R21 also boosted baseline humoral responses in Burkinabe adults with well-maintained responses suggesting natural boosting. Interpretation R21 adjuvanted with MM is safe and has comparable immunogenicity to RTS,S/AS01 B , even when administered at a five-fold lower 10μg dose in UK and African populations. This forms the basis for efficacy testing of this vaccine which could prove to be particularly cost-effective to manufacture and deploy.
Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.
BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.
HLA-DQA1*05 Carriage Associated With Development of Anti-Drug Antibodies to Infliximab and Adalimumab in Patients With Crohn's Disease.
BACKGROUND & AIMS: Anti-tumor necrosis factor (anti-TNF) therapies are the most widely used biologic drugs for treating immune-mediated diseases, but repeated administration can induce the formation of anti-drug antibodies. The ability to identify patients at increased risk for development of anti-drug antibodies would facilitate selection of therapy and use of preventative strategies. METHODS: We performed a genome-wide association study to identify variants associated with time to development of anti-drug antibodies in a discovery cohort of 1240 biologic-naïve patients with Crohn's disease starting infliximab or adalimumab therapy. Immunogenicity was defined as an anti-drug antibody titer ≥10 AU/mL using a drug-tolerant enzyme-linked immunosorbent assay. Significant association signals were confirmed in a replication cohort of 178 patients with inflammatory bowel disease. RESULTS: The HLA-DQA1*05 allele, carried by approximately 40% of Europeans, significantly increased the rate of immunogenicity (hazard ratio [HR], 1.90; 95% confidence interval [CI], 1.60-2.25; P = 5.88 × 10-13). The highest rates of immunogenicity, 92% at 1 year, were observed in patients treated with infliximab monotherapy who carried HLA-DQA1*05; conversely the lowest rates of immunogenicity, 10% at 1 year, were observed in patients treated with adalimumab combination therapy who did not carry HLA-DQA1*05. We confirmed this finding in the replication cohort (HR, 2.00; 95% CI, 1.35-2.98; P = 6.60 × 10-4). This association was consistent for patients treated with adalimumab (HR, 1.89; 95% CI, 1.32-2.70) or infliximab (HR, 1.92; 95% CI, 1.57-2.33), and for patients treated with anti-TNF therapy alone (HR, 1.75; 95% CI, 1.37-2.22) or in combination with an immunomodulator (HR, 2.01; 95% CI, 1.57-2.58). CONCLUSIONS: In an observational study, we found a genome-wide significant association between HLA-DQA1*05 and the development of antibodies against anti-TNF agents. A randomized controlled biomarker trial is required to determine whether pretreatment testing for HLA-DQA1*05 improves patient outcomes by helping physicians select anti-TNF and combination therapies. ClinicalTrials.gov ID: NCT03088449.
Becalming Type 17 Inflammation in Ulcerative Colitis.
Genome-wide association studies in ulcerative colitis point to a role for FcγRIIA, a receptor for IgG. Castro-Dopico et al. (2019) find a profound induction of anti-commensal IgG in the colonic mucosa of UC patients and outline a pathway whereby FcγR activation by IgG triggers IL-1β production, type 17 immunity, and the exacerbation of inflammation.
Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn's disease: a prospective, multicentre, cohort study.
BACKGROUND: Anti-TNF drugs are effective treatments for the management of Crohn's disease but treatment failure is common. We aimed to identify clinical and pharmacokinetic factors that predict primary non-response at week 14 after starting treatment, non-remission at week 54, and adverse events leading to drug withdrawal. METHODS: The personalised anti-TNF therapy in Crohn's disease study (PANTS) is a prospective observational UK-wide study. We enrolled anti-TNF-naive patients (aged ≥6 years) with active luminal Crohn's disease at the time of first exposure to infliximab or adalimumab between March 7, 2013, and July 15, 2016. Patients were evaluated for 12 months or until drug withdrawal. Demographic data, smoking status, age at diagnosis, disease duration, location, and behaviour, previous medical and drug history, and previous Crohn's disease-related surgeries were recorded at baseline. At every visit, disease activity score, weight, therapy, and adverse events were recorded; drug and total anti-drug antibody concentrations were also measured. Treatment failure endpoints were primary non-response at week 14, non-remission at week 54, and adverse events leading to drug withdrawal. We used regression analyses to identify which factors were associated with treatment failure. FINDINGS: We enrolled 955 patients treated with infliximab (753 with originator; 202 with biosimilar) and 655 treated with adalimumab. Primary non-response occurred in 295 (23·8%, 95% CI 21·4-26·2) of 1241 patients who were assessable at week 14. Non-remission at week 54 occurred in 764 (63·1%, 60·3-65·8) of 1211 patients who were assessable, and adverse events curtailed treatment in 126 (7·8%, 6·6-9·2) of 1610 patients. In multivariable analysis, the only factor independently associated with primary non-response was low drug concentration at week 14 (infliximab: odds ratio 0·35 [95% CI 0·20-0·62], p=0·00038; adalimumab: 0·13 [0·06-0·28], p<0·0001); the optimal week 14 drug concentrations associated with remission at both week 14 and week 54 were 7 mg/L for infliximab and 12 mg/L for adalimumab. Continuing standard dosing regimens after primary non-response was rarely helpful; only 14 (12·4% [95% CI 6·9-19·9]) of 113 patients entered remission by week 54. Similarly, week 14 drug concentration was also independently associated with non-remission at week 54 (0·29 [0·16-0·52] for infliximab; 0·03 [0·01-0·12] for adalimumab; p<0·0001 for both). The proportion of patients who developed anti-drug antibodies (immunogenicity) was 62·8% (95% CI 59·0-66·3) for infliximab and 28·5% (24·0-32·7) for adalimumab. For both drugs, suboptimal week 14 drug concentrations predicted immunogenicity, and the development of anti-drug antibodies predicted subsequent low drug concentrations. Combination immunomodulator (thiopurine or methotrexate) therapy mitigated the risk of developing anti-drug antibodies (hazard ratio 0·39 [95% CI 0·32-0·46] for infliximab; 0·44 [0·31-0·64] for adalimumab; p<0·0001 for both). For infliximab, multivariable analysis of immunododulator use, and week 14 drug and anti-drug antibody concentrations showed an independent effect of immunomodulator use on week 54 non-remission (odds ratio 0·56 [95% CI 0·38-0·83], p=0·004). INTERPRETATION: Anti-TNF treatment failure is common and is predicted by low drug concentrations, mediated in part by immunogenicity. Clinical trials are required to investigate whether personalised induction regimens and treatment-to-target dose intensification improve outcomes. FUNDING: Guts UK, Crohn's and Colitis UK, Cure Crohn's Colitis, AbbVie, Merck Sharp and Dohme, Napp Pharmaceuticals, Pfizer, and Celltrion.
GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis.
Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.
HLA-dependent variation in SARS-CoV-2 CD8+ T cell cross-reactivity with human coronaviruses
Pre-existing T cell immunity to SARS-CoV-2 in individuals without prior exposure to SARS-CoV-2 has been reported in several studies. While emerging evidence hints toward prior exposure to common-cold human coronaviruses (HCoV), the extent of- and conditions for-cross-protective immunity between SARS-CoV-2 and HCoVs remain open. Here, by leveraging a comprehensive pool of publicly available functionally evaluated SARS-CoV-2 peptides, we report 126 immunogenic SARS-CoV-2 peptides with high sequence similarity to 285 MHC-presented target peptides from at least one of four HCoV, thus providing a map describing the landscape of SARS-CoV-2 shared and private immunogenic peptides with functionally validated T cell responses. Using this map, we show that while SARS-CoV-2 immunogenic peptides in general exhibit higher level of dissimilarity to both self-proteome and -microbiomes, there exist several SARS-CoV-2 immunogenic peptides with high similarity to various human protein coding genes, some of which have been reported to have elevated expression in severe COVID-19 patients. We then combine our map with a SARS-CoV-2-specific TCR repertoire data from COVID-19 patients and healthy controls and show that whereas the public repertoire for the majority of convalescent patients are dominated by TCRs cognate to private SARS-CoV-2 peptides, for a subset of patients, more than 50% of their public repertoires that show reactivity to SARS-CoV-2, consist of TCRs cognate to shared SARS-CoV-2-HCoV peptides. Further analyses suggest that the skewed distribution of TCRs cognate to shared and private peptides in COVID-19 patients is likely to be HLA-dependent. Finally, by utilising the global prevalence of HLA alleles, we provide 10 peptides with known cognate TCRs that are conserved across SARS-CoV-2 and multiple human coronaviruses and are predicted to be recognised by a high proportion of the global population. Overall, our work indicates the potential for HCoV-SARS-CoV-2 reactive CD8 + T cells, which is likely dependent on differences in HLA-coding genes among individuals. These findings may have important implications for COVID-19 heterogeneity and vaccine-induced immune responses as well as robustness of immunity to SARS-CoV-2 and its variants.