A team of international researchers, including scientists at the MRC Molecular Haematology Unit, report promising results from a phase I clinical trial of Enasidenib, a novel drug that may help patients suffering from Acute Myeloid Leukaemia.

None © Martin Phelps

Acute myeloid leukaemia (AML) is the most common aggressive leukaemia in adults and is incurable in most patients. Up to 15% of adult AML patients have a mutation in the IDH2 gene. The resulting abnormal IDH2 enzyme produces a chemical not normally found in blood cells called 2-hydroxyglutarate (2-HG). 2-HG stops the bone marrow from producing normal mature blood cells, including neutrophils and monocytes, cells that are essential for fighting life-threatening infections. Instead, immature leukaemia cells accumulate in the patient’s bone marrow and blood. AML patients need regular blood transfusions, and have a very poor immune system.

Most treatments for AML involve aggressive chemotherapy drugs that work by killing leukaemia cells, but these drugs have serious side-effects and are not suitable for the majority of AML patients. A new drug, Enasidenib, operates in a different way to conventional chemotherapy treatments. Instead of killing leukaemia cells, Enasidenib re-programmes them into neutrophils and monocytes that can function normally as part of a healthier immune system. An international team of researchers, including scientists at the MRC Molecular Hematology Unit at the MRC Wethearall Institute of Medicine, led by Prof Paresh Vyas and Dr Lynn Quek (Radcliffe Department of Medicine) recently published exciting results of their Phase 1 clinical trial of Enasidenib.

The researchers report that Enasidenib was effective in 40% of the 176 AML patients who participated in the study, with 19% achieving complete remission. Patients had improved immune systems and required fewer or no blood transfusions. In addition, the majority of participants showed few side effects to the drug. Crucially, most patients in this clinical trial had not responded to other AML treatments. Enasidenib represents an important addition to the currently limited range of effective treatments for this disease. 

The results of this clinical trial, together with supporting scientific data, have helped secure FDA approval for Enasidenib. The Oxford team is now leading the research programme to investigate why Enasidenib is not effective in all patients and if it can be more effective in combination with other AML therapies.

 

Find out more:

Amatangelo, Quek et al (2017) Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response, Blood, 130 (6) 732-741

Stein EM, DiNardo CD (2017) Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemiaBlood, 130 (6) 722-731

Similar stories

MRC HIU appoints new Director

MRC HIU RDM

We are pleased to announce that Professor Alison Simmons has been appointed as the new Director of the MRC Human Immunology Unit.

Research unpicks why immune responses decrease with age

MRC MHU

Study reveals what happens to blood cell production during the ageing process, which could help identify new therapeutic targets.

Study uncovers how low blood iron diminishes immune response

MRC HIU NDM RDM

The Drakesmith group finds that low blood serum iron levels can inhibit T-cell and B-cell immune responses to vaccines and infections.

Study finds new human blood disorder

MRC MHU RDM

The Patel Group have discovered a new human disease caused by formaldehyde accumulation in cells

Role-playing computer game helps players understand how vaccines work on a global scale

Centre for Computational Biology MRC HIU RDM

A free game launched today allows players to role-play the deployment of a virtual vaccine to help to halt the global spread of a viral pandemic.